1
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Ladisa M, Lamura A. Diffusion-Driven X-Ray Two-Dimensional Patterns Denoising. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13122773. [PMID: 32570931 PMCID: PMC7344928 DOI: 10.3390/ma13122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The use of a mathematical model is proposed in order to denoise X-ray two-dimensional patterns. The method relies on a generalized diffusion equation whose diffusion constant depends on the image gradients. The numerical solution of the diffusion equation provides an efficient reduction of pattern noise as witnessed by the computed peak of signal-to-noise ratio. The use of experimental data with different inherent levels of noise allows us to show the success of the method even in the case, experimentally relevant, when patterns are blurred by Poissonian noise. The corresponding MatLab code for the numerical method is made available.
Collapse
|
3
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Altamura D, Pastore SG, Raucci MG, Siliqi D, De Pascalis F, Nacucchi M, Ambrosio L, Giannini C. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8728-8736. [PMID: 27020229 DOI: 10.1021/acsami.6b00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model.
Collapse
Affiliation(s)
- Davide Altamura
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Stella G Pastore
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Maria G Raucci
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Fabio De Pascalis
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Michele Nacucchi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
- Department of Chemical Sciences and Materials Technology (DSCTM), National Research Council , Rome 000133, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| |
Collapse
|
5
|
Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:88-102. [PMID: 25012069 PMCID: PMC4322020 DOI: 10.1089/ten.teb.2014.0180] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
Abstract
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies.
Collapse
Affiliation(s)
- Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
6
|
Sibillano T, De Caro L, Altamura D, Siliqi D, Ramella M, Boccafoschi F, Ciasca G, Campi G, Tirinato L, Di Fabrizio E, Giannini C. An optimized table-top small-angle X-ray scattering set-up for the nanoscale structural analysis of soft matter. Sci Rep 2014; 4:6985. [PMID: 25382272 PMCID: PMC4225548 DOI: 10.1038/srep06985] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.
Collapse
Affiliation(s)
- T. Sibillano
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - L. De Caro
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Altamura
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Siliqi
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - M. Ramella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - F. Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - G. Ciasca
- Istituto di Fisica, Universitá Cattolica S. Cuore, L.go Francesco Vito 1 I-00168, Roma, Italy
| | - G. Campi
- Istituto di Cristallografia (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Roma, Italy
| | - L. Tirinato
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - E. Di Fabrizio
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - C. Giannini
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| |
Collapse
|
7
|
Cedola A, Campi G, Pelliccia D, Bukreeva I, Fratini M, Burghammer M, Rigon L, Arfelli F, Chang Chen R, Dreossi D, Sodini N, Mohammadi S, Tromba G, Cancedda R, Mastrogiacomo M. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 2013; 59:189-201. [DOI: 10.1088/0031-9155/59/1/189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Ladisa M, Lamura A, Laudadio T. Blind source separation and automatic tissue typing of microdiffraction data by hierarchical nonnegative matrix factorization. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813021729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this article a nonnegative blind source separation technique, known as nonnegative matrix factorization, is applied to microdiffraction data in order to extract characteristic patterns and to determine their spatial distribution in tissue typing problems occurring in bone-tissue engineering. In contrast to other blind source separation methods, nonnegative matrix factorization only requires nonnegative constraints on the extracted sources and corresponding weights, which makes it suitable for the analysis of data occurring in a variety of applications. In particular, here nonnegative matrix factorization is hierarchically applied to two-dimensional meshes of X-ray diffraction data measured in bone samples with implanted tissue. Such data are characterized by nonnegative profiles and their analysis provides significant information about the structure of possibly new deposited bone tissue. A simulation and real data studies show that the proposed method is able to retrieve the patterns of interest and to provide a reliable and accurate segmentation of the given X-ray diffraction data.
Collapse
|
9
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
10
|
Histological and Synchrotron Radiation-Based Computed Microtomography Study of 2 Human-Retrieved Direct Laser Metal Formed Titanium Implants. IMPLANT DENT 2013; 22:175-81. [DOI: 10.1097/id.0b013e318282817d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Debye function analysis and 2D imaging of nanoscaled engineered bone. Biomaterials 2010; 31:8289-98. [DOI: 10.1016/j.biomaterials.2010.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
|