1
|
Men Y, Ren Y, Zhao Z, Wang X, Liu L. Numerical analysis of streaming potential induced by loads in micro-pores of articular cartilage. Comput Methods Biomech Biomed Engin 2023; 26:1761-1771. [PMID: 37902439 DOI: 10.1080/10255842.2022.2141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
In order to understand the distribution of streaming potentials in cartilage pores, this paper established finite element model to analyze. The results showed that the streaming potential in cartilage micro-pores increased along the axis. The electric potential in 5 μm straight micro-pore was about 50 μV, and the electric potential of curved bifurcation model was about 30 μV. The pressure and Zeta potential had a linear growth relationship with the streaming potential. The streaming potential decreased with the increase of ion concentration until ion concentration was saturated. These results could provide a theoretical basis for cartilage research.
Collapse
Affiliation(s)
- Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yucheng Ren
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Zhonghai Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Lu Liu
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research Enterprises, Just Huajian Medical Devices (Tianjin) Co., Ltd, Tianjin, China
| |
Collapse
|
2
|
Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202212561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage defects bring about disability and worldwide socioeconomic loss, therefore, articular cartilage repair and regeneration is recognized as a global issue. However, due to its avascular and nearly acellular characteristic, cartilage tissue regeneration ability is limited to some extent. Despite the availability of various treatment methods, including palliative drugs and surgical regenerative therapy, articular cartilage repair and regeneration still face major challenges due to the lack of appropriate methods and materials. Smart biomaterials can regulate cell behavior and provide excellent tissue repair and regeneration microenvironment, thus inducing articular cartilage repair and regeneration. This process is adjusted by controlling drug/bioactive factors release via responding to exogenous/endogenous stimuli, tailoring materials’ structure and function similar to native cartilage or providing physiochemical and physical signaling factors. Herein, smart biomaterials, recently applied in articular cartilage repair and regeneration, are elaborated from two aspects: smart drug release system and smart scaffolds. Furthermore, articular cartilage and its defects and advanced manufacturing techniques of smart biomaterials are discussed in brief. Finally, perspectives for smart biomaterials used in articular cartilage repair and regeneration are presented and the clinical translation of smart biomaterials is emphasized.
Collapse
Affiliation(s)
- Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics Tongji University Zhangwu Road 100 Shanghai 200092 P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
3
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Computational study on electromechanics of electroactive hydrogels for cartilage-tissue repair. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105739. [PMID: 32950923 DOI: 10.1016/j.cmpb.2020.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The self-repair capability of articular cartilage is limited because of non-vascularization and low turnover of its extracellular matrix. Regenerating hyaline cartilage remains a significant clinical challenge as most non-surgical and surgical treatments provide only mid-term relief. Eventually, further pain and mobility loss occur for many patients in the long run due to further joint deterioration. Repair of articular cartilage tissue using electroactive scaffolds and biophysical stimuli like electrical and osmotic stimulation may have the potential to heal cartilage defects occurring due to trauma, osteoarthritis, or sport-related injuries. Therefore, the focus of the current study is to present a computational model of electroactive hydrogels for the cartilage-tissue repair as a first step towards an optimized experimental design. METHODS The multiphysics transport model that mainly includes the Poisson-Nernst-Planck equations and the mechanical equation is used to find the electrical stimulation response of the polyelectrolyte hydrogels. Based upon this, a numerical model on electromechanics of electroactive hydrogels seeded with chondrocytes is presented employing the open-source software FEniCS, which is a Python library for finite-element analysis. RESULTS We analyzed the ionic concentrations and electric potential in a hydrogel sample and the cell culture medium, the osmotic pressure created due to ionic concentration variations and the resulting hydrogel displacement. The proposed mathematical model was validated with examples from literature. CONCLUSIONS The presented model for the electrical and osmotic stimulation of a hydrogel sample can serve as a useful tool for the development and analysis of a cartilaginous scaffold employing electrical stimulation. By analyzing various parameters, we pave the way for future research on a finer scale using open-source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, Rostock 18057, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| |
Collapse
|
4
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Numerical Simulation of Electroactive Hydrogels for Cartilage-Tissue Engineering. MATERIALS 2019; 12:ma12182913. [PMID: 31505797 PMCID: PMC6774344 DOI: 10.3390/ma12182913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
The intrinsic regeneration potential of hyaline cartilage is highly limited due to the absence of blood vessels, lymphatics, and nerves, as well as a low cell turnover within the tissue. Despite various advancements in the field of regenerative medicine, it remains a challenge to remedy articular cartilage defects resulting from trauma, aging, or osteoarthritis. Among various approaches, tissue engineering using tailored electroactive scaffolds has evolved as a promising strategy to repair damaged cartilage tissue. In this approach, hydrogel scaffolds are used as artificial extracellular matrices, and electric stimulation is applied to facilitate proliferation, differentiation, and cell growth at the defect site. In this regard, we present a simulation model of electroactive hydrogels to be used for cartilage–tissue engineering employing open-source finite-element software FEniCS together with a Python interface. The proposed mathematical formulation was first validated with an example from the literature. Then, we computed the effect of electric stimulation on a circular hydrogel sample that served as a model for a cartilage-repair implant.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department of Electronics Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| |
Collapse
|
5
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
6
|
Farooqi AR, Bader R, van Rienen U. Numerical Study on Electromechanics in Cartilage Tissue with Respect to Its Electrical Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:152-166. [PMID: 30351244 PMCID: PMC6486674 DOI: 10.1089/ten.teb.2018.0214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyaline cartilage undergoes many substantial age-related physiochemical and biomechanical changes that reduce its ability to overcome the effects of mechanical stress and injury. In quest of therapeutic options, magnetic stimulation and electrical stimulation (ES) have been proposed for improving tissue engineering approaches for the repair of articular cartilage. The aim of this study is to summarize in silico investigations involving induced electrical properties of cartilage tissue due to various biophysical stimuli along their respective mathematical descriptions. Based on these, a preliminary numerical study involving electromechanical transduction in bovine cartilage tissue has been carried out using an open source finite element computational software. The simulation results have been compared to experimental results from the literature. This study serves as a basis for further in silico studies to better understand the behavior of hyaline cartilage tissue due to ES and to find an optimal stimulation protocol for the cartilage regeneration. Moreover, it provides an overview of the basic models along with mathematical description and scope for future research regarding electrical behavior of the cartilage tissue using open source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
| | - Rainer Bader
- 2 Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, University Medicine Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Hiemer B, Krogull M, Bender T, Ziebart J, Krueger S, Bader R, Jonitz-Heincke A. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol Med Rep 2018; 18:2133-2141. [PMID: 29916541 PMCID: PMC6072227 DOI: 10.3892/mmr.2018.9174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
During joint movement and mechanical loading, electric potentials occur within cartilage tissue guiding cell development and regeneration. Exposure of cartilage exogenous electric stimulation (ES) may imitate these endogenous electric fields and promote healing processes. Therefore, the present study investigated the influence of electric fields on human chondrocytes, mesenchymal stem cells and the co-culture of the two. Human chondrocytes isolated from articular cartilage obtained post-mortally and human mesenchymal stem cells derived from bone marrow (BM-MSCs) were seeded onto a collagen-based scaffold separately or as co-culture. Following incubation with the growth factors over 3 days, ES was performed using titanium electrodes applying an alternating electric field (700 mV, 1 kHz). Cells were exposed to an electric field over 7 days under either hypoxic or normoxic culture conditions. Following this, metabolic activity was investigated and synthesis rates of extracellular matrix proteins were analyzed. ES did not influence metabolic activity of chondrocytes or BM-MSCs. Gene expression analyses demonstrated that ES increased the expression of collagen type II mRNA and aggrecan mRNA in human chondrocytes under hypoxic culture conditions. Likewise, collagen type II synthesis was significantly increased following exposure to electric fields under hypoxia. BM-MSCs and the co-culture of chondrocytes and BM-MSCs revealed a similar though weaker response regarding the expression of cartilage matrix proteins. The electrode setup may be a valuable tool to investigate the influence of ES on human chondrocytes and BM-MSCs contributing to fundamental knowledge including future applications of ES in cartilage repair.
Collapse
Affiliation(s)
- Bettina Hiemer
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Martin Krogull
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Thomas Bender
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Josefin Ziebart
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Simone Krueger
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Centre, D‑18057 Rostock, Germany
| |
Collapse
|
8
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
9
|
Castro NJ, Patel R, Zhang LG. Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration. Cell Mol Bioeng 2015; 8:416-432. [PMID: 26366231 DOI: 10.1007/s12195-015-0389-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic and acute osteochondral defects as a result of osteoarthritis and trauma present a common and serious clinical problem due to the tissue's inherent complexity and poor regenerative capacity. In addition, cells within the osteochondral tissue are in intimate contact with a 3D nanostructured extracellular matrix composed of numerous bioactive organic and inorganic components. As an emerging manufacturing technique, 3D printing offers great precision and control over the microarchitecture, shape and composition of tissue scaffolds. Therefore, the objective of this study is to develop a biomimetic 3D printed nanocomposite scaffold with integrated differentiation cues for improved osteochondral tissue regeneration. Through the combination of novel nano-inks composed of organic and inorganic bioactive factors and advanced 3D printing, we have successfully fabricated a series of novel constructs which closely mimic the native 3D extracellular environment with hierarchical nanoroughness, microstructure and spatiotemporal bioactive cues. Our results illustrate several key characteristics of the 3D printed nanocomposite scaffold to include improved mechanical properties as well as excellent cytocompatibility for enhanced human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation in vitro. The present work further illustrates the effectiveness of the scaffolds developed here as a promising and highly tunable platform for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Nathan J Castro
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052
| | - Romil Patel
- Department of Biomedical Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052 ; Department of Biomedical Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052 ; Department of Medicine, The George Washington University, 800 22 street, NW, Washington, DC, 20052
| |
Collapse
|
10
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|