1
|
Wu X, Cadinanos-Garai A, Quach V, Jurado E, Vaissié A, Abou-El-Enein M. Redefining quality in cell and gene therapies: Lessons from implementing electronic QMS in academic cGMP facility. Mol Ther 2025:S1525-0016(25)00258-8. [PMID: 40170354 DOI: 10.1016/j.ymthe.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Manufacturing cell and gene therapies (CGTs) involves complex processes that require robust quality management, especially within academic current Good Manufacturing Practice (cGMP) facilities, where resources are often limited. Traditional paper-based quality management systems (QMSs), while initially convenient, often become burdensome, leading to errors, poor traceability, and compliance risks. Electronic QMSs (eQMSs) are gaining recognition for their ability to centralize and automate key quality processes, significantly enhancing operational efficiency and regulatory readiness. Through an in-depth case study of the University of Southern California and Children's Hospital of Los Angeles academic cGMP facility, this review demonstrates tangible improvements achieved by adopting an eQMS. Practical insights gained from this experience are shared, including careful selection of eQMS platforms, phased rollout strategies, and comprehensive staff training. The review also addresses common implementation challenges and suggests practical solutions to overcome them. Lessons learned and strategies discussed here can serve as valuable guidance for other academic institutions considering eQMS adoption. Ultimately, embracing an eQMS enables academic CGT manufacturers to operate more efficiently and stay ahead in a fast-moving field.
Collapse
Affiliation(s)
- Xia Wu
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Amaia Cadinanos-Garai
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Vivian Quach
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Eric Jurado
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Alix Vaissié
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Mohamed Abou-El-Enein
- USC/CHLA Cell Therapy Program, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Regulatory and Quality Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Philippe V, Laurent A, Hirt-Burri N, Abdel-Sayed P, Scaletta C, Schneebeli V, Michetti M, Brunet JF, Applegate LA, Martin R. Retrospective Analysis of Autologous Chondrocyte-Based Cytotherapy Production for Clinical Use: GMP Process-Based Manufacturing Optimization in a Swiss University Hospital. Cells 2022; 11:1016. [PMID: 35326468 PMCID: PMC8947208 DOI: 10.3390/cells11061016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cultured autologous human articular chondrocyte (HAC) implantation has been extensively investigated for safe and effective promotion of structural and functional restoration of knee cartilage lesions. HAC-based cytotherapeutic products for clinical use must be manufactured under an appropriate quality assurance system and follow good manufacturing practices (GMP). A prospective clinical trial is ongoing in the Lausanne University Hospital, where the HAC manufacturing processes have been implemented internally. Following laboratory development and in-house GMP transposition of HAC cell therapy manufacturing, a total of 47 patients have been treated to date. The main aim of the present study was to retrospectively analyze the available manufacturing records of the produced HAC-based cytotherapeutic products, outlining the inter-individual variability existing among the 47 patients regarding standardized transplant product preparation. These data were used to ameliorate and to ensure the continued high quality of cytotherapeutic care in view of further clinical investigations, based on the synthetic analyses of existing GMP records. Therefore, a renewed risk analysis-based process definition was performed, with specific focus set on process parameters, controls, targets, and acceptance criteria. Overall, high importance of the interdisciplinary collaboration and of the manufacturing process robustness was underlined, considering the high variability (i.e., quantitative, functional) existing between the treated patients and between the derived primary HAC cell types.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Valentine Schneebeli
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Murielle Michetti
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
| | - Jean-François Brunet
- Cell Production Center, Service of Pharmacy, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (N.H.-B.); (P.A.-S.); (C.S.); (M.M.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (V.S.); (R.M.)
| |
Collapse
|
4
|
SWANSON WB, MISHINA Y. New paradigms in regenerative engineering: Emerging role of extracellular vesicles paired with instructive biomaterials. BIOCELL 2022; 46:1445-1451. [PMID: 35221452 PMCID: PMC8881001 DOI: 10.32604/biocell.2022.018781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have long been regarded as critical components of regenerative medicine strategies, given their multipotency and persistence in a variety of tissues. Recently, the specific role of MSCs in mediating regenerative outcomes has been attributed (in part) to secreted factors from transplanted cells, namely extracellular vesicles. This viewpoint manuscript highlights the promise of cell-derived extracellular vesicles as agents of regeneration, enhanced by synergy with appropriate biomaterials platforms. Extracellular vesicles are a potentially interesting regenerative tool to enhance the synergy between MSCs and biomaterials. As a result, we believe these technologies will improve patient outcomes through efficient therapeutic strategies resulting in predictable patient outcomes.
Collapse
Affiliation(s)
- W. Benton SWANSON
- Department of Biologic and Materials Science & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuji MISHINA
- Department of Biologic and Materials Science & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
6
|
Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, Dong T, Dustin ML, Hu Z, McGranahan N, Miller ML, Santana-Gonzalez L, Seymour LW, Shi T, Van Loo P, Yau C, White H, Wietek N, Church DN, Wedge DC, Ahmed AA. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer 2021; 124:1759-1776. [PMID: 33782566 PMCID: PMC8144577 DOI: 10.1038/s41416-021-01353-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.
Collapse
Affiliation(s)
- Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ashwag Albukhari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James D Brenton
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart M Curbishley
- Advanced Therapies Facility and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Tao Dong
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Martin L Miller
- Cancer System Biology Group, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Laura Santana-Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Leonard W Seymour
- Gene Therapy Group, Department of Oncology, University of Oxford, Oxford, UK
| | - Tingyan Shi
- Department of Gynecological Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- The Alan Turing Institute, London, UK
| | - Helen White
- Patient Representative, Endometrial Cancer Genomics England Clinical Interpretation Partnership (GeCIP) Domain, London, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - David C Wedge
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Iancu EM, Kandalaft LE. Challenges and advantages of cell therapy manufacturing under Good Manufacturing Practices within the hospital setting. Curr Opin Biotechnol 2020; 65:233-241. [DOI: 10.1016/j.copbio.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
|
8
|
Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng 2019; 117:272-284. [DOI: 10.1002/bit.27176] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ioannis Angelopoulos
- Department of Biomedical ResearchFoundation of Research and Technology‐Hellas, Institute of Molecular Biology and Biotechnology Ioannina Greece
| | - Mark C. Allenby
- Instiute of Health and Biomedical InnovationQueensland University of Technology Brisbane Australia
| | | | - Mauricio Zamorano
- Chemical Engineering DepartmentUniversidad de La Frontera Temuco Chile
| |
Collapse
|