1
|
Bagwe S, Mehta V, Mathur A, Kumbhalwar A, Bhati A. Role of various pharmacologic agents in alveolar bone regeneration: A review. Natl J Maxillofac Surg 2023; 14:190-197. [PMID: 37661974 PMCID: PMC10474547 DOI: 10.4103/njms.njms_436_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 09/05/2023] Open
Abstract
Alveolar bone and gingiva are components of the periodontium that house the tooth. It constantly adapts itself to the masticatory forces and position of the tooth. However, localized diseases like chronic periodontitis and certain systemic diseases destroy periodontal tissues, which include the alveolar bone. Various pharmacological agents are being explored for their pleiotropic properties to combat the destruction of alveolar bone. This review focuses on the role of pharmacological agents in alveolar bone regeneration.
Collapse
Affiliation(s)
| | - Vini Mehta
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ankita Mathur
- Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Abhishek Kumbhalwar
- Research Consultant, STAT SENSE, Srushti 10, Sector 1 D, Amba Township Pvt. Ltd., Trimandir, Adalaj, Gujarat, India
| | - Ashok Bhati
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Saudi Arabia
| |
Collapse
|
2
|
Chen P, Zhang C, He P, Pan S, Zhong W, Wang Y, Xiao Q, Wang X, Yu W, He Z, Gao X, Song J. A Biomimetic Smart Nanoplatform as “Inflammation Scavenger” for Regenerative Therapy of Periodontal Tissue. Int J Nanomedicine 2022; 17:5165-5186. [PMID: 36388874 PMCID: PMC9642321 DOI: 10.2147/ijn.s384481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The functional reconstruction of periodontal tissue defects remains a clinical challenge due to excessive and prolonged host response to various endogenous and exogenous pro-inflammatory stimuli. Thus, a biomimetic nanoplatform with the capability of modulating inflammatory response in a microenvironment-responsive manner is attractive for regenerative therapy of periodontal tissue. Methods Herein, a facile and green design of engineered bone graft materials was developed by integrating a biomimetic apatite nanocomposite with a smart-release coating, which could realize inflammatory modulation by “on-demand” delivery of the anti-inflammatory agent through a pH-sensing mechanism. Results In vitro and in vivo experiments demonstrated that this biocompatible nanoplatform could facilitate the clearance of reactive oxygen species in human periodontal ligament stem cells under inflammatory conditions via inhibiting the production of endogenous proinflammatory mediators, in turn contributing to the enhanced healing efficacy of periodontal tissue. Moreover, this system exhibited effective antimicrobial activity against common pathogenic bacteria in the oral cavity, which is beneficial for the elimination of exogenous pro-inflammatory factors from bacterial infection during healing of periodontal tissue. Conclusion The proposed strategy provides a versatile apatite nanocomposite as a promising “inflammation scavenger” and propels the development of intelligent bone graft materials for periodontal and orthopedic applications.
Collapse
Affiliation(s)
- Poyu Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Ping He
- Department of Stomatology, Dazhou Central Hospital, Dazhou, SiChuan, 635000, People’s Republic of China
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xinyan Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Zhangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Correspondence: Xiang Gao; Jinlin Song, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China, Tel/Fax +86 23 88860105; Tel/Fax +86 23 88860026, Email ;
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
3
|
Ferreira JA, Kantorski KZ, Dubey N, Daghrery A, Fenno JC, Mishina Y, Chan HL, Mendonça G, Bottino MC. Personalized and Defect-Specific Antibiotic-Laden Scaffolds for Periodontal Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49642-49657. [PMID: 34637255 DOI: 10.1021/acsami.1c11787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periodontitis compromises the integrity and function of tooth-supporting structures. Although therapeutic approaches have been offered, predictable regeneration of periodontal tissues remains intangible, particularly in anatomically complex defects. In this work, personalized and defect-specific antibiotic-laden polymeric scaffolds containing metronidazole (MET), tetracycline (TCH), or their combination (MET/TCH) were created via electrospinning. An initial screening of the synthesized fibers comprising chemo-morphological analyses, cytocompatibility assessment, and antimicrobial validation against periodontopathogens was accomplished to determine the cell-friendly and anti-infective nature of the scaffolds. According to the cytocompatibility and antimicrobial data, the 1:3 MET/TCH formulation was used to obtain three-dimensional defect-specific scaffolds to treat periodontally compromised three-wall osseous defects in rats. Inflammatory cell response and new bone formation were assessed by histology. Micro-computerized tomography was performed to assess bone loss in the furcation area at 2 and 6 weeks post implantation. Chemo-morphological and cell compatibility analyses confirmed the synthesis of cytocompatible antibiotic-laden fibers with antimicrobial action. Importantly, the 1:3 MET/TCH defect-specific scaffolds led to increased new bone formation, lower bone loss, and reduced inflammatory response when compared to antibiotic-free scaffolds. Altogether, our results suggest that the fabrication of defect-specific antibiotic-laden scaffolds holds great potential toward the development of personalized (i.e., patient-specific medication) scaffolds to ablate infection while affording regenerative properties.
Collapse
Affiliation(s)
- Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Post-Graduate Program in Oral Sciences (Periodontology Unit), School of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Hsun-Liang Chan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| |
Collapse
|
4
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:377. [PMID: 34215342 PMCID: PMC8254211 DOI: 10.1186/s13287-021-02456-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). Conclusion This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical experiments. These results provided important information for the systemic application of MSCs as a potential application of bone formation in further animal experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02456-w.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
6
|
Pouroutzidou GK, Liverani L, Theocharidou A, Tsamesidis I, Lazaridou M, Christodoulou E, Beketova A, Pappa C, Triantafyllidis KS, Anastasiou AD, Papadopoulou L, Bikiaris DN, Boccaccini AR, Kontonasaki E. Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. Int J Mol Sci 2021; 22:E577. [PMID: 33430065 PMCID: PMC7827177 DOI: 10.3390/ijms22020577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol-gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Anna Theocharidou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Ioannis Tsamesidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Maria Lazaridou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Evi Christodoulou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Anastasia Beketova
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Christina Pappa
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Konstantinos S. Triantafyllidis
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK;
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Eleana Kontonasaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
7
|
Shen S, Zhang Y, Zhang S, Wang B, Shang L, Shao J, Lin M, Cui Y, Sun S, Ge S. 6-Bromoindirubin-3'-oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model. ACS Biomater Sci Eng 2020; 7:232-241. [PMID: 33320531 DOI: 10.1021/acsbiomaterials.0c01078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges of periodontal tissue regeneration. Successful bone tissue engineering comprises three key factors: stem cells, growth factors, and scaffolds. 6-Bromoindirubin-3'-oxime (BIO) is an inhibitor of glycogen synthase kinase-3 (GSK-3) that can activate the Wnt signaling pathway by enhancing β-catenin activity. In this study, the effects of BIO on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were investigated. Poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA) emerged as promising biomaterials; thus, we developed a novel HA hydrogel embedded with BIO-encapsulated PLGA microspheres and injected the formulation into the gingival sulcus of mice with experimental periodontitis. The release speed of this system was fast in the first week and followed a sustained release phase until week 4. In vivo experiments showed that this PLGA-BIO-HA hydrogel system can inhibit periodontal inflammation, promote bone regeneration, and induce the expression of bone-forming markers alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN) in a mouse periodontitis model. Therefore, this PLGA-BIO-HA hydrogel system provides a promising therapeutic strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Song Shen
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Yilin Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China
| | - Songmei Zhang
- Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, 14642 New York, United States
| | - Bing Wang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Lingling Shang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Jinlong Shao
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, 250012 Jinan, Shandong, China
| | - Yating Cui
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shengjun Sun
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
8
|
Wang B, Booij-Vrieling HE, Bronkhorst EM, Shao J, Kouwer PHJ, Jansen JA, Walboomers XF, Yang F. Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery. Acta Biomater 2020; 116:259-267. [PMID: 32937208 DOI: 10.1016/j.actbio.2020.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023]
Abstract
In periodontal treatment, topical adjunctive therapy with antimicrobials or anti-inflammatory agents is frequently applied. However, currently available drug carrier biomaterials often exhibit poor perfusion into small crevices, such as the deep and irregular periodontal pockets, due to relatively high viscosity. Moreover, high polymer concentrations of the polymer can potentially be cytotoxic upon confined local administration. This study aimed to formulate an antimicrobial and anti-inflammatory treatment option, by incorporating doxycycline (DOX) and/or lipoxin A4 (LXA4) into 0.5 wt% thermo-reversible polyisocyanopeptide (PIC). PIC can form hydrogels upon low polymer concentration, and we hypothesized that the thermo-reversible nature of the material would allow for application into the periodontal pocket. The formulations were characterized in vitro and finally tested in dogs with naturally occurring periodontitis, which were not euthanized afterward. Results showed that PIC/DOX/LXA4 hydrogel could be easily prepared and injected into periodontal pockets. The PIC hydrogel facilitated the release of DOX or LXA4 for around 4 days in vitro. When applied in dogs, the hydrogel exerted no local or systemic adverse effects. Gels loaded with LXA4 and/or DOX reduced the subgingival bacterial load and pro-inflammatory interleukin-8 level. In addition, PIC-DOX and PIC-DOX+LXA4 improved gingival clinical attachment by 0.6 mm compared with conventional periodontal treatment alone (i.e. mechanical debridement). In conclusion, the thermo-reversible PIC hydrogel is a safe and effective vehicle for periodontal drug delivery.
Collapse
Affiliation(s)
- Bing Wang
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Biomaterials, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Henriëtte E Booij-Vrieling
- Department of Clinical Sciences of Companion Animals, General Surgery, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Ewald M Bronkhorst
- Radboud University Medical Center, Department of Dentistry, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jinlong Shao
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Biomaterials, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - John A Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Biomaterials, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - X Frank Walboomers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Biomaterials, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Fang Yang
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Biomaterials, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Wang B, Wang J, Shao J, Kouwer PH, Bronkhorst EM, Jansen JA, Walboomers XF, Yang F. A tunable and injectable local drug delivery system for personalized periodontal application. J Control Release 2020; 324:134-145. [DOI: 10.1016/j.jconrel.2020.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
|