1
|
Li H, Yang Y, Wang C, Mu Y, Li F, Zhang Z, Yang Z, Guo Q, Liu S. Analysis of Three-dimensional Printing Strategies for Meniscus/Articular Disc Repair and Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39659269 DOI: 10.1089/ten.teb.2024.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Three-dimensional printing (3DP) strategies in the field of meniscus and articular disc repair and regeneration have recently garnered significant attention. However, a comprehensive bibliometric assessment to evaluate the scientific progress in this area is lacking. This research aims to explore the development, key areas of focus, and new directions in 3DP techniques for meniscus and articular disc over the last 15 years, considering both structural and temporal perspectives. Academic papers on 3DP approaches for the repair and regeneration of these tissues were retrieved from the Web of Science Core Collection. Bibliometric analysis tools such as R software, CiteSpace, and VOSviewer were utilized to examine the historical patterns, topic evolution, and emerging trends in this domain. For the past 15 years, there has been a steady increase in scholarly attention toward 3DP for the repair of meniscus and articular discs, along with a notable expansion in impactful scientific partnerships. The timeline analysis of references indicates that 3DP methodologies have predominantly shaped the research agenda over the last 10 years, retaining their significance amid annual fluctuations in the focus of citations. Four emerging research subfields were identified through keyword clustering: "mesenchymal stem cells," "fabrication," "scaffolds," and "cartilage." Additionally, we mapped out the top 13 key clusters based on CiteSpace. The time zone view of keyword analysis identified three emerging research niches: "anti-inflammatory and antioxidant," "chondrogenic differentiation," and "silk-based biomaterial-ink." The insights gleaned from these bibliometric studies highlight the current state and trends in 3DP research for meniscus and articular disc, potentially assisting researchers in identifying key focal points and pioneering innovative research directions within this area.
Collapse
Affiliation(s)
- Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yongkang Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Chao Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Yuhao Mu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Fakai Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Zhixing Zhang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Li H, Zhao T, Cao F, Deng H, He S, Li J, Liu S, Yang Z, Yuan Z, Guo Q. Integrated bioactive scaffold with aptamer-targeted stem cell recruitment and growth factor-induced pro-differentiation effects for anisotropic meniscal regeneration. Bioeng Transl Med 2022; 7:e10302. [PMID: 36176622 PMCID: PMC9472018 DOI: 10.1002/btm2.10302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of the knee meniscus remains a significant clinical challenge owing to its complex anisotropic tissue organization, complex functions, and limited healing capacity in the inner region. The development of in situ tissue-engineered meniscal scaffolds, which provide biochemical signaling to direct endogenous stem/progenitor cell (ESPC) behavior, has the potential to revolutionize meniscal tissue engineering. In this study, a fiber-reinforced porous scaffold was developed based on aptamer Apt19S-mediated mesenchymal stem cell (MSC)-specific recruitment and dual growth factor (GF)-enhanced meniscal differentiation. The aptamer, which can specifically recognize and recruit MSCs, was first chemically conjugated to the decellularized meniscus extracellular matrix (MECM) and then mixed with gelatin methacrylate (GelMA) to form a photocrosslinkable hydrogel. Second, connective tissue growth factor (CTGF)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and transforming growth factor-β3 (TGF-β3)-loaded PLGA microparticles (MPs) were mixed with aptamer-conjugated MECM to simulate anisotropic meniscal regeneration. These three bioactive molecules were delivered sequentially. Apt19S, which exhibited high binding affinity to synovium-derived MSCs (SMSCs), was quickly released to facilitate the mobilization of ESPCs. CTGF incorporated within PLGA NPs was released rapidly, inducing profibrogenic differentiation, while sustained release of TGF-β3 in PLGA MPs remodeled the fibrous matrix into fibrocartilaginous matrix. The in vitro results showed that the sequential release of Apt19S/GFs promoted cell migration, proliferation, and fibrocartilaginous differentiation. The in vivo results demonstrated that the sequential release system of Apt/GF-scaffolds increased neomeniscal formation in rabbit critical-sized meniscectomies. Thus, the novel delivery system shows potential for guiding meniscal regeneration in situ.
Collapse
Affiliation(s)
- Hao Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Tianyuan Zhao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Fuyang Cao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Orthopedicsthe First Affiliated Hospital of Zhengzhou UniversityEqi DistrictZhengzhouChina
| | - Haoyuan Deng
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Songlin He
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jianwei Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Shuyun Liu
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Zhen Yang
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Arthritis Clinic & Research Center, Peking University People's HospitalPeking UniversityBeijingChina
| | - Zhiguo Yuan
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Bone and Joint Surgery, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Quanyi Guo
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
3
|
Hao L, Tianyuan Z, Zhen Y, Fuyang C, Jiang W, Zineng Y, Zhengang D, Shuyun L, Chunxiang H, Zhiguo Y, Quanyi G. Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration. Biofabrication 2021; 14. [PMID: 34610586 DOI: 10.1088/1758-5090/ac2cd7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 01/26/2023]
Abstract
Regenerating the meniscus remains challenging because of its avascular, aneural, and alymphatic nature. Three-dimensional (3D) printing technology provides a promising strategy to fabricate biomimetic meniscal scaffolds with an anisotropic architecture, a proper biomechanical microenvironment, and bioactive components. Herein, 3D printing technology is adopted by coencapsulating chemokines (platelet-derived growth factor-BB, PDGF-BB) and small chondroinductive molecules (kartogenin, KGN) within biomimetic polycaprolactone/hydrogel composite scaffolds. The incorporated PDGF-BB is expected to promote endogenous stem cell homing, and KGN in poly(lactic-co-glycolic) acid microspheres is employed to target the chondrogenesis of resident mesenchymal stem cells (MSCs). First, we chose basic bioinks composed of gelatin methacrylamide and hyaluronic acid methacrylate and then incorporated four concentrations (0%, 0.5%, 1.0%, and 2.0%) of meniscal extracellular matrix into the bioink to systematically study the superiority of these combinations and identify the optimally printable bioink. Next, we investigated the scaffold morphology and drug release profile. The effects of releasing the drugs in a sequentially controlled manner from the composite scaffolds on the fate of MSCs were also evaluated. The biofabricated scaffolds, with and without dual drug loading, were further studied in a rabbit model established with a critical-size medial meniscectomy. We found that meniscal scaffolds containing both drugs had combinational advantages in enhancing cell migration and synergistically promoted MSC chondrogenic differentiation. The dual drug-loaded scaffolds also significantly promotedin vivoneomeniscal regeneration three and six months after implantation in terms of histological and immunological phenotypes. The results presented herein reveal that this 3D-printed dual drug-releasing meniscal scaffold possesses the potential to act as an off-the-shelf product for the clinical treatment of meniscal injury and related joint degenerative diseases.
Collapse
Affiliation(s)
- Li Hao
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zhao Tianyuan
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yang Zhen
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, People's Republic of China
| | - Cao Fuyang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, 1 Jian East Road, Eqi District, Zhengzhou 450052, People's Republic of China
| | - Wu Jiang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yan Zineng
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Ding Zhengang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Liu Shuyun
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Hao Chunxiang
- Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yuan Zhiguo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Guo Quanyi
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| |
Collapse
|
4
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Li H, Liao Z, Yang Z, Gao C, Fu L, Li P, Zhao T, Cao F, Chen W, Yuan Z, Sui X, Liu S, Guo Q. 3D Printed Poly(ε-Caprolactone)/Meniscus Extracellular Matrix Composite Scaffold Functionalized With Kartogenin-Releasing PLGA Microspheres for Meniscus Tissue Engineering. Front Bioeng Biotechnol 2021; 9:662381. [PMID: 33996783 PMCID: PMC8119888 DOI: 10.3389/fbioe.2021.662381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Meniscus tissue engineering (MTE) aims to fabricate ideal scaffolds to stimulate the microenvironment for recreating the damaged meniscal tissue. Indeed, favorable mechanical properties, suitable biocompatibility, and inherent chondrogenic capability are crucial in MTE. In this study, we present a composite scaffold by 3D printing a poly(ε-caprolactone) (PCL) scaffold as backbone, followed by injection with the meniscus extracellular matrix (MECM), and modification with kartogenin (KGN)-loaded poly(lactic-co-glycolic) acid (PLGA) microsphere (μS), which serves as a drug delivery system. Therefore, we propose a plan to improve meniscus regeneration via KGN released from the 3D porous PCL/MECM scaffold. The final results showed that the hydrophilicity and bioactivity of the resulting PCL/MECM scaffold were remarkably enhanced. In vitro synovium-derived mesenchymal stem cells (SMSCs) experiments suggested that introducing MECM components helped cell adhesion and proliferation and maintained promising ability to induce cell migration. Moreover, KGN-incorporating PLGA microspheres, which were loaded on scaffolds, showed a prolonged release profile and improved the chondrogenic differentiation of SMSCs during the 14-day culture. Particularly, the PCL/MECM-KGN μS seeded by SMSCs showed the highest secretion of total collagen and aggrecan. More importantly, the synergistic effect of the MECM and sustained release of KGN can endow the PCL/MECM-KGN μS scaffolds with not only excellent cell affinity and cell vitality preservation but also chondrogenic activity. Thus, the PCL/MECM-KGN μS scaffolds are expected to have good application prospects in the field of MTE.
Collapse
Affiliation(s)
- Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Chen
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
6
|
An YH, Kim JA, Yim HG, Han WJ, Park YB, Jin Park H, Young Kim M, Jang J, Koh RH, Kim SH, Hwang NS, Ha CW. Meniscus regeneration with injectable Pluronic/PMMA-reinforced fibrin hydrogels in a rabbit segmental meniscectomy model. J Tissue Eng 2021; 12:20417314211050141. [PMID: 34721832 PMCID: PMC8552387 DOI: 10.1177/20417314211050141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Injectable hydrogel systems are a facile approach to apply to the damaged meniscus in a minimally invasive way. We herein developed a clinically applicable and injectable semi-interpenetrated network (semi-IPN) hydrogel system based on fibrin (Fb), reinforced with Pluronic F127 (F127) and polymethyl methacrylate (PMMA), to improve the intrinsic weak mechanical properties. Through the dual-syringe device system, the hydrogel could form a gel state within about 50 s, and the increment of compressive modulus of Fb hydrogels was achieved by adding F127 from 3.0% (72.0 ± 4.3 kPa) to 10.0% (156.0 ± 9.8 kPa). The shear modulus was enhanced by adding PMMA microbeads (26.0 ± 1.1 kPa), which was higher than Fb (13.5 ± 0.5 kPa) and Fb/F127 (21.7 ± 0.8 kPa). Moreover, the addition of F127 and PMMA also delayed the rate of enzymatic biodegradation of Fb hydrogel. Finally, we confirmed that both Fb/F127 and Fb/F127/PMMA hydrogels showed accelerated tissue repair in the in vivo segmental defect of the rabbit meniscus model. In addition, the histological analysis showed that the quality of the regenerated tissues healed by Fb/F127 was particularly comparable to that of healthy tissue. The biomechanical strength of the regenerated tissues of Fb/F127 (3.50 ± 0.35 MPa) and Fb/F127/PMMA (3.59 ± 0.89 MPa) was much higher than that of Fb (0.82 ± 0.05 MPa) but inferior to that of healthy tissue (6.63 ± 1.12 MPa). These results suggest that the reinforcement of Fb hydrogel using FDA-approved synthetic biomaterials has great potential to be used clinically.
Collapse
Affiliation(s)
- Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Jin-A Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun-Gu Yim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jung Han
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Park
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Man Young Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaewon Jang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Racheal H. Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Su-Hwan Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|