1
|
Shayya G, Benedetti C, Chagot L, Stachowicz ML, Chassande O, Catros S. Revolutionizing Dental Implant Research: A Systematic Review on Three-Dimensional In Vitro Models. Tissue Eng Part C Methods 2024; 30:368-382. [PMID: 38587434 DOI: 10.1089/ten.tec.2023.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Dental implants have been clinically used for almost five decades with high success rates. In vitro research models used in implant dentistry are limited to two-dimensional experiments, which are reproducible and well adapted to evaluate a single parameter but do not reproduce the complexity of clinical settings. On the contrary, the in vivo research models using animals offer similar histological and anatomical features to humans, and tissue healing can be close to a clinical situation, but those models are usually accompanied with ethical concerns, and their outcomes could not be extrapolated to humans because of interspecies variabilities. This makes the development of novel in vitro models that recapitulate physiological events occurring during dental implant placement of particular interest for current research in dentistry. Also, such models could be challenged by setting a pathological environment (peri-implantitis) to better understand the disease and eventually serve as a platform to evaluate novel treatment modalities. The aim of this systematic literature review was to cover all the in vitro three-dimensional (3D) complex models available for research in implant dentistry. To accomplish this, a comprehensive search of the literature present on Scopus and PubMed databases was done using specific keywords, as well as inclusion/exclusion criteria. Out of 1334 articles found, we have finally included 27 articles in this review with publication dates between 2001 and 2022. In those articles, the 3D models were designed to study tissue-implant interface behavior in bone or gingival tissue. The articles focused on simulating implant integration, evaluating the effect of different conditions on implant integration, or developing an infection model for the implant integration process. The methods used involved implant material and cells organized in a specific 3D structure. The 3D models developed were able to simulate the process of dental implant osseo- and soft tissue integration and lead to results comparable with conventional in vitro and in vivo models. A relatively limited number of articles were obtained, which indicates that this is an emerging field, highly dependent on progresses made in biotechnologies and tissue engineering, and that further investigation is needed to enhance these 3D in vitro models.
Collapse
Affiliation(s)
- Ghannaa Shayya
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
| | - Clémentine Benedetti
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
| | - Lise Chagot
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
| | - Marie-Laure Stachowicz
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
| | - Olivier Chassande
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
| | - Sylvain Catros
- Inserm BioTis, Laboratory for the Bioengineering of Tissues, University of Bordeaux, Bordeaux, France
- Department of Oral Surgery, University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 2017; 22:1808-1815. [PMID: 28778587 DOI: 10.1016/j.drudis.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Drug development requires physiologically more appropriate model systems and assays to increase understanding of drug action and pathological processes in individual humans. Specifically, patient-derived cells offer great opportunities as representative cellular model systems. Moreover, with novel label-free cellular assays, it is often possible to investigate complex biological processes in their native environment. Combining these two offers distinct opportunities for increasing physiological relevance. Here, we review impedance-based label-free technologies in the context of patient samples, focusing on commonly used cell types, including fibroblasts, blood components, and stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free technologies to patient samples can produce highly biorelevant data and, with them, unique opportunities for drug development and precision medicine.
Collapse
Affiliation(s)
- Julia M Hillger
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Wai-Ling Lieuw
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands.
| |
Collapse
|
3
|
Altmann B, Rabel K, Kohal RJ, Proksch S, Tomakidi P, Adolfsson E, Bernsmann F, Palmero P, Fürderer T, Steinberg T. Cellular transcriptional response to zirconia-based implant materials. Dent Mater 2017; 33:241-255. [PMID: 28087075 DOI: 10.1016/j.dental.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To adequately address clinically important issues such as osseointegration and soft tissue integration, we screened for the direct biological cell response by culturing human osteoblasts and gingival fibroblasts on novel zirconia-based dental implant biomaterials and subjecting them to transcriptional analysis. METHODS Biomaterials used for osteoblasts involved micro-roughened surfaces made of a new type of ceria-stabilized zirconia composite with two different topographies, zirconium dioxide, and yttria-stabilized zirconia (control). For fibroblasts smooth ceria- and yttria-stabilized zirconia surface were used. The expression of 90 issue-relevant genes was determined on mRNA transcription level by real-time PCR Array technology after growth periods of 1 and 7 days. RESULTS Generally, modulation of gene transcription exhibited a dual dependence, first by time and second by the biomaterial, whereas biomaterial-triggered changes were predominantly caused by the biomaterials' chemistry rather than surface topography. Per se, modulated genes assigned to regenerative tissue processes such as fracture healing and wound healing and in detail included colony stimulating factors (CSF2 and CSF3), growth factors, which regulate bone matrix properties (e.g. BMP3 and TGFB1), osteogenic BMPs (BMP2/4/6/7) and transcription factors (RUNX2 and SP7), matrix collagens and osteocalcin, laminins as well as integrin ß1 and MMP-2. SIGNIFICANCE With respect to the biomaterials under study, the screening showed that a new zirconia-based composite stabilized with ceria may be promising to provide clinically desired periodontal tissue integration. Moreover, by detecting biomarkers modulated in a time- and/or biomaterial-dependent manner, we identified candidate genes for the targeted analysis of cell-implant bioresponse during biomaterial research and development.
Collapse
Affiliation(s)
- Brigitte Altmann
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Kerstin Rabel
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | | | - Falk Bernsmann
- NTTF Coatings GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany
| | - Paola Palmero
- Department of Applied Science and Technology, INSTM R.U. PoliTO, LINCE Lab., Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Tobias Fürderer
- MOESCHTER GROUP Holding GmbH & Co. KG, Hesslingsweg 65-67, 44309 Dortmund, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs). Dent Mater 2016; 32:1152-64. [PMID: 27402299 DOI: 10.1016/j.dental.2016.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/24/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Polymer-infiltrated-ceramic-network (PICN) materials constitute an innovative class of CAD-CAM materials offering promising perspectives in prosthodontics, but no data are available in the literature regarding their biological properties. The objective of the present study was to evaluate the in vitro biocompatibility of PICNs with human gingival fibroblasts (HGFs) in comparison with materials typically used for implant prostheses and abutments. METHODS HGF attachment, proliferation and spreading on discs made of PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control), were evaluated using a specific insert-based culture system (IBS-R). Sample surface properties were characterized by XPS, contact angle measurement, profilometry and SEM. RESULTS Ti and Zi gave the best results regarding HGF viability, morphology, number and coverage increase with time in comparison with the negative control, while PICN and eM gave intermediate results, cell spreading being comparable for PICN, Ti, Zi and eM. Despite the presence of polymers and their related hydrophobicity, PICN exhibited comparable results to glass-ceramic materials, which could be explained by the mode of polymerization of the monomers. SIGNIFICANCE The results of the present study confirm that the currently employed materials, i.e. Ti and Zi, can be considered to be the gold standard of materials in terms of HGF behavior, while PICN gave intermediate results comparable to eM. The impact of the present in vitro results needs to be further investigated clinically, particularly in the view of the utilization of PICNs for prostheses on bone-level implants.
Collapse
|
5
|
Schulz SD, Rüppell C, Tomakidi P, Steinberg T, Reichl FX, Hellwig E, Polydorou O. Gene expression analysis of conventional and interactive human gingival cell systems exposed to dental composites. Dent Mater 2015; 31:1321-34. [PMID: 26345997 DOI: 10.1016/j.dental.2015.08.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was the detection of putative gene expression-related effects of dental composites in conventional and interactive gingival cell systems. METHODS Conventional monoculture (MC) and interactive cell systems (ICS) comprising human gingival fibroblast (HGF) and immortalized human gingival keratinocytes (IHGK) were exposed for 24h and 7 days according to ISO10993-12:2012 manufactured eluates of different composites (Ceram X(®), Filtek™ Supreme XT, Filtek™ Silorane, Fusio™ Liquid Dentin, and Vertise™ Flow). qRT-PCR-based mRNA analysis for biomarkers indicating cell proliferation, differentiation, apoptosis, inflammation, and adhesion was performed. Apoptotic cells were quantified by annexin-V labeling. RESULTS Due to low RNA amounts, qPCR could not be performed for Vertise™ Flow and Fusio™ Liquid Dentin at day 7. At 24h, flowables yielded increased transcription for biomarkers of inflammation and apoptosis in IHGK, irrespective of the cell system. HGF cultures displayed lower transcription for cell adhesion markers in both cell systems. Filtek™ Supreme XT showed increased differentiation by elevated filaggrin gene expression in both cell systems for IHGK at day 7, while Filtek™ Silorane and Ceram X(®) yielded elevation of inflammation biomarkers in both cell types. Annexin-V labeling revealed high apoptosis rates for both flowables and Filtek™ Supreme XT for IHGK, while low rates were detected for Filtek™ Silorane and Ceram X(®). SIGNIFICANCE Among the composites evaluated, exposition of IHGK and HGF in conventional and interactive cell systems demonstrated most pronounced gene expression alterations in response to flowables, coinciding with elevated levels of apoptosis.
Collapse
Affiliation(s)
- Simon Daniel Schulz
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Christopher Rüppell
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Center of Dental Medicine, Freiburg, Germany
| | - Franz-Xaver Reichl
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Olga Polydorou
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Center of Dental Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
6
|
Al-Ahmad A, Laird D, Zou P, Tomakidi P, Steinberg T, Lienkamp K. Nature-inspired antimicrobial polymers--assessment of their potential for biomedical applications. PLoS One 2013; 8:e73812. [PMID: 24040079 PMCID: PMC3767731 DOI: 10.1371/journal.pone.0073812] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
We explored the potential of poly(oxonorbornene)-based synthetic mimics of antimicrobial peptides (SMAMPs), a promising new class of antimicrobial polymers with cell-selectivity and low resistance development potential, for clinical applications. We evaluated their antimicrobial activity against a panel of seven clinical and regulatory relevant bacteria strains, and tested their toxicity with two different kinds of primary human cells. For the antimicrobial activity, we performed the minimum inhibitory concentration (MIC) assay and determined the minimum bactericidal concentration (MBC) according to the NCCLS guidelines. The results revealed specific problems that may occur when testing the antimicrobial activity of amphiphilic cationic polymers, and confirmed the working hypothesis that the more hydrophilic SMAMP polymers in our portfolio were 'doubly selective', i.e. they are not only selective for bacteria over mammalian cells, but also for Gram-positive over Gram-negative bacteria. The data also showed that we could improve the broad-band activity of one SMAMP, and in combination with the results from the cell toxicity experiments, identified this polymer as a promising candidate for further in-vitro and in-vivo testing. Transmission electron studies revealed that the cellular envelopes of both E. coli and S. aureus were severely damaged due to SMAMP action on the bacterial membrane, which strengthened the argument that SMAMPs closely resemble antimicrobial peptides. To test cell toxicity, we used the traditional hemolysis assay with human red blood cells, and the novel xCelligence assay with primary human fibroblasts. The data reported here is the first example in which a hemolysis assay is benchmarked against the xCelligence assay. It revealed that the same trends were obtained using these complementary methods. This establishes the xCelligence assay with primary human cells as a useful tool for SMAMP characterization.
Collapse
Affiliation(s)
- Ali Al-Ahmad
- Operative Dentistry and Periodontology, University Medical Center of the Albert-Ludwigs-Universität, Freiburg, Germany
| | - Dougal Laird
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität, Freiburg, Germany
- Oral Biotechnology, University Medical Center of the Albert-Ludwigs-Universität, Freiburg, Germany
| | - Peng Zou
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität, Freiburg, Germany
- Department of Microsystems Engineering, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Pascal Tomakidi
- Oral Biotechnology, University Medical Center of the Albert-Ludwigs-Universität, Freiburg, Germany
| | - Thorsten Steinberg
- Oral Biotechnology, University Medical Center of the Albert-Ludwigs-Universität, Freiburg, Germany
| | - Karen Lienkamp
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität, Freiburg, Germany
- Department of Microsystems Engineering, Albert-Ludwigs-Universität, Freiburg, Germany
| |
Collapse
|
7
|
Gómez-Florit M, Ramis JM, Xing R, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M. Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces. J Periodontal Res 2013; 49:425-36. [PMID: 23919718 DOI: 10.1111/jre.12121] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Gingival fibroblasts are responsible for the constant adaptation, wound healing and regeneration of gingival connective tissue. New titanium-zirconium (TiZr) abutment surfaces have been designed to improve soft tissue integration and reduce implant failure compared with titanium (Ti). The aim of the present study was first to characterize a primary human gingival fibroblast (HGF) model and secondly to evaluate their differential response to Ti and TiZr polished (P), machined (M) and machined + acid-etched (modMA) surfaces, respectively. MATERIAL AND METHODS HGF were cultured on tissue culture plastic or on the different Ti and TiZr surfaces. Cell morphology was evaluated through confocal and scanning electron microscopy. A wound healing assay was performed to evaluate the capacity of HGF to close a scratch. The expression of genes was evaluated by real-time RT-PCR, addressing: (i) extracellular matrix organization and turnover; (ii) inflammation; (iii) cell adhesion and structure; and (iv) wound healing. Finally, cells on Ti/TiZr surfaces were immunostained with anti-ITGB3 antibodies to analyze integrin β3 production. Matrix metalloproteinase-1 (MMP1) and inhibitor of metallopeptidases-1 (TIMP1) production were analyzed by enzyme-linked immunosorbent assays. RESULTS On tissue culture plastic, HGF showed no differences between donors on cell proliferation and on the ability for wound closure; α-smooth muscle actin was overexpressed on scratched monolayers. The differentiation profile showed increased production of extracellular matrix components. Ti and TiZr showed similar biocompatibility with HGF. TiZr increased integrin-β3 mRNA and protein levels, compared with Ti. Cells on TiZr surfaces showed higher MMP1 protein than Ti surfaces, although similar TIMP1 protein production. In this in vitro experiment, P and M surfaces from both Ti and TiZr showed better HGF growth than modMA. CONCLUSION Taking into account the better mechanical properties and bioactivity of TiZr compared with Ti, the results of the present study show that TiZr is a potential clinical candidate for soft tissue integration and implant success.
Collapse
Affiliation(s)
- M Gómez-Florit
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain
| | | | | | | | | | | | | |
Collapse
|