1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Corduff N. Surgical or Nonsurgical Facial Rejuvenation: The Patients' Choice. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5318. [PMID: 37799437 PMCID: PMC10550030 DOI: 10.1097/gox.0000000000005318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/20/2023] [Indexed: 10/07/2023]
Abstract
Background Patients seeking a pan-facial rejuvenation may not receive appropriate medical advice on surgical versus nonsurgical treatments, resulting in those who are best-suited for surgery receiving nonsurgical options, and vice versa. Patients who requested total-face, nonsurgical revitalization were surveyed to understand the factors influencing this decision-making. Methods Patients consulting for total facial rejuvenation were surveyed on their reasons for seeking nonsurgical versus surgical interventions by an investigator with 30 years of plastic surgery experience, practicing in a nonsurgical clinic alongside a dermatologist and aesthetic physician. Results Of the 92 patients surveyed, 78% completed the survey, 47% of whom had considered facelift surgery, and 14% of whom proceeded to inquiries or consultations with a plastic surgeon about facelift surgery. All respondents were women, and age was not an exclusion factor. Forty-four percent would still consider facelifts in later life. Among the most common reasons for choosing nonsurgical approaches were a desire for natural and subtle results, cost, having flexibility in treatment choice, concerns about surgical and anesthesia risks, downtime, the ability to distribute treatments over time, and scarring. Conclusions Many patients book nonsurgical treatments without prior professional advice, and consider these as a temporary solution, but may desire surgery later in life. Before conducting nonsurgical treatments, doctors should identify this group and avoid interventions that may interfere with optimal surgical outcomes later. Also, some patients desire surgical outcomes when surgery is not a feasible option, and thus seek nonsurgical alternatives. For this group, realistic goals must be set before treatment to avoid disappointment.
Collapse
Affiliation(s)
- Niamh Corduff
- From the Cosmetic Refinement Clinic, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Escudero-Duch C, Muñoz-Moreno L, Martin-Saavedra F, Sanchez-Casanova S, Lerma-Juarez MA, Vilaboa N. Remote control of transgene expression using noninvasive near-infrared irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112697. [PMID: 36963296 DOI: 10.1016/j.jphotobiol.2023.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
This study investigated whether noninvasive near-infrared (NIR) energy could be transduced into heat in deep-seated organs in which adenovirus type-5 vectors tend to accumulate, thereby activating heat shock protein (HSP) promoter-mediated transgene expression, without local administration of photothermal agents. NIR irradiation of the subdiaphragmatic and left dorsocranial part of the abdominal cavity of adult immunocompetent C3H/HeNRj mice with an 808-nm laser effectively increased the temperature of the irradiated regions of the liver and spleen, respectively, resulting in the accumulation of the heat-inducible HSP70 protein. Spatial control of transgene expression was achieved in the NIR-irradiated regions of the mice administered an adenoviral vector carrying a firefly luciferase (fLuc) coding sequence controlled by a human HSP70B promoter, as assessed by bioluminescence and immunohistochemistry analyses. Levels of reporter gene expression were modulated by controlling NIR power density. Spatial control of transgene expression through NIR-focused activation of the HSP70B promoter, as well as temporal regulation by administering rapamycin was achieved in the spleens of mice inoculated with an adenoviral vector encoding a rapamycin-dependent transactivator driven by the HSP70B promoter and an adenoviral vector carrying a fLuc coding sequence controlled by the rapamycin-activated transactivator. Mice that were administered rapamycin and exposed to NIR light expressed fLuc activity in the splenic region, whereas no activity was detected in mice that were only administered rapamycin or vehicle or only NIR-irradiated. Thus, in the absence of any exogenously supplied photothermal material, remote control of heat-induced transgene expression can be achieved in the liver and spleen by means of noninvasive NIR irradiation.
Collapse
Affiliation(s)
- Clara Escudero-Duch
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Laura Muñoz-Moreno
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Francisco Martin-Saavedra
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Silvia Sanchez-Casanova
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Miguel Angel Lerma-Juarez
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
4
|
Li L, Zhang X, Zhou J, Zhang L, Xue J, Tao W. Non-Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107705. [PMID: 35475541 DOI: 10.1002/smll.202107705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Owing to the development of nanotechnology and noninvasive treatment, thermal therapy in combination with external stimuli has been applied for tissue engineering and regenerative medicine (TERM), which has attracted more and more attention in recent years. In this review, the recent progress of applying a variety of non-invasive thermal therapeutic modalities for TERM, including photothermal therapy, magnetic thermotherapy, and ultrasound thermotherapy, as well as other thermal therapeutics are discussed. The parameters and conditions that need to be considered and regulated to realize a well-controlled thermal therapy for tissue regeneration are also discussed. Afterwards, the current concerns and challenges of putting thermal therapy into clinical applications are pointed out. At last, perspectives are provided for the future development directions, aiming to providing opportunities and a novel pathway for TERM.
Collapse
Affiliation(s)
- Longfei Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodi Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
5
|
Norris EG, Dalecki D, Hocking DC. Using Acoustic Fields to Fabricate ECM-Based Biomaterials for Regenerative Medicine Applications. RECENT PROGRESS IN MATERIALS 2020; 2:1-24. [PMID: 33604591 PMCID: PMC7889011 DOI: 10.21926/rpm.2003018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound is emerging as a promising tool for both characterizing and fabricating engineered biomaterials. Ultrasound-based technologies offer a diverse toolbox with outstanding capacity for optimization and customization within a variety of therapeutic contexts, including improved extracellular matrix-based materials for regenerative medicine applications. Non-invasive ultrasound fabrication tools include the use of thermal and mechanical effects of acoustic waves to modify the structure and function of extracellular matrix scaffolds both directly, and indirectly via biochemical and cellular mediators. Materials derived from components of native extracellular matrix are an essential component of engineered biomaterials designed to stimulate cell and tissue functions and repair or replace injured tissues. Thus, continued investigations into biological and acoustic mechanisms by which ultrasound can be used to manipulate extracellular matrix components within three-dimensional hydrogels hold much potential to enable the production of improved biomaterials for clinical and research applications.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Armstrong JPK, Stevens MM. Using Remote Fields for Complex Tissue Engineering. Trends Biotechnol 2020; 38:254-263. [PMID: 31439372 PMCID: PMC7023978 DOI: 10.1016/j.tibtech.2019.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Great strides have been taken towards the in vitro engineering of clinically relevant tissue constructs using the classic triad of cells, materials, and biochemical factors. In this perspective, we highlight ways in which these elements can be manipulated or stimulated using a fourth component: the application of remote fields. This arena has gained great momentum over the last few years, with a recent surge of interest in using magnetic, optical, and acoustic fields to guide the organization of cells, materials, and biochemical factors. We summarize recent developments and trends in this arena and then lay out a series of challenges that we believe, if met, could enable the widespread adoption of remote fields in mainstream tissue engineering.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 2020; 241:119909. [PMID: 32135355 DOI: 10.1016/j.biomaterials.2020.119909] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.
Collapse
|
8
|
Zhu YI, Yoon H, Zhao AX, Emelianov SY. Leveraging the Imaging Transmit Pulse to Manipulate Phase-Change Nanodroplets for Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:692-700. [PMID: 30703017 PMCID: PMC6545583 DOI: 10.1109/tuffc.2019.2895248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phase-change perfluorohexane nanodroplets (PFHnDs) are a new class of recondensable submicrometer-sized contrast agents that have potential for contrast-enhanced and super-resolution ultrasound imaging with an ability to reach extravascular targets. The PFHnDs can be optically triggered to undergo vaporization, resulting in spatially stationary, temporally transient microbubbles. The vaporized PFHnDs are hyperechoic in ultrasound imaging for several to hundreds of milliseconds before recondensing to their native, hypoechoic, liquid nanodroplet state. The decay of echogenicity, i.e., the dynamic behavior of the ultrasound signal from optically triggered PFHnDs in ultrasound imaging, can be captured using high-frame-rate ultrasound imaging. We explore the possibility to manipulate the echogenicity dynamics of optically triggered PFHnDs in ultrasound imaging by changing the phase of the ultrasound imaging pulse. Specifically, the ultrasound imaging system was programmed to transmit two imaging pulses with inverse polarities. We show that the imaging pulse phase can affect the amplitude and the temporal behavior of PFHnD echogenicity in ultrasound imaging. The results of this study demonstrate that the ultrasound echogenicity is significantly increased (about 78% improvement) and the hyperechoic timespan of optically triggered PFHnDs is significantly longer (about four times) if the nanodroplets are imaged by an ultrasound pulse starting with rarefactional pressure versus a pulse starting with compressional pressure. Our finding has direct and significant implications for contrast-enhanced ultrasound imaging of droplets in applications such as super-resolution imaging and molecular imaging where detection of individual or low-concentration PFHnDs is required.
Collapse
|
9
|
Moncion A, Harmon JN, Li Y, Natla S, Farrell EC, Kripfgans OD, Stegemann JP, Martín-Saavedra FM, Vilaboa N, Franceschi RT, Fabiilli ML. Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomaterials 2019; 194:14-24. [PMID: 30572283 PMCID: PMC6339574 DOI: 10.1016/j.biomaterials.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/13/2018] [Accepted: 12/09/2018] [Indexed: 01/05/2023]
Abstract
Conventional tissue engineering approaches rely on scaffold-based delivery of exogenous proteins, genes, and/or cells to stimulate regeneration via growth factor signaling. However, scaffold-based approaches do not allow active control of dose, timing, or spatial localization of a delivered growth factor once the scaffold is implanted, yet these are all crucial parameters in promoting tissue regeneration. To address this limitation, we developed a stable cell line containing a heat-activated and rapamycin-dependent gene expression system. In this study, we investigate how high intensity focused ultrasound (HIFU) can spatiotemporally control firefly luciferase (fLuc) transgene activity both in vitro and in vivo by the tightly controlled generation of hyperthermia. Cells were incorporated into composite scaffolds containing fibrin and hydroxyapatite particles, which yielded significant increases in acoustic attenuation and heating in response to HIFU compared to fibrin alone. Using 2.5 MHz HIFU, transgene activation was observed at acoustic intensities of 201 W/cm2 and higher. Transgene activation was spatially patterned in the scaffolds by rastering HIFU at speeds up to 0.15 mm/s. In an in vivo study, a 67-fold increase in fLuc activity was observed in scaffolds exposed to HIFU and rapamycin versus rapamycin only at 2 days post implantation. Repeated activation of transgene expression was also demonstrated 8 days after implantation. No differences in in vivo scaffold degradation or compaction were observed between +HIFU and -HIFU groups. These results highlight the potential utility of using this heat-activated and rapamycin-dependent gene expression system in combination with HIFU for the controlled stimulation of tissue regeneration.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jennifer N Harmon
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yan Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Sam Natla
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Easton C Farrell
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Francisco M Martín-Saavedra
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. RECENT FINDINGS In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Raphael Lieber
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel.
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA.
| |
Collapse
|
11
|
Effect of low-intensity pulsed ultrasound on osteogenic human mesenchymal stem cells commitment in a new bone scaffold. J Appl Biomater Funct Mater 2017; 15:e215-e222. [PMID: 28478615 PMCID: PMC6379883 DOI: 10.5301/jabfm.5000342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Bone tissue engineering is helpful in finding alternatives to overcome
surgery limitations. Bone growth and repair are under the control of
biochemical and mechanical signals; therefore, in recent years several
approaches to improve bone regeneration have been evaluated. Osteo-inductive
biomaterials, stem cells, specific growth factors and biophysical stimuli
are among those. The aim of the present study was to evaluate if
low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve
the colonization of an MgHA/Coll hybrid composite scaffold by human
mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS
stimulation was applied to hMSCs cultured on MgHA/Coll hybrid composite
scaffold in osteogenic medium, mimicking the microenvironment of a bone
fracture. Methods hMSCs were seeded on MgHA/Coll hybrid composite scaffold in an
osteo-inductive medium and exposed to LIPUS treatment for 20 min/day for
different experimental times (7 days, 14 days). The investigation was
focused on (i) the improvement of hMSCs to colonize the MgHA/Coll hybrid
composite scaffold by LIPUS, in terms of cell viability and ultrastructural
analysis; (ii) the activation of MAPK/ERK, osteogenic
(ALPL, COL1A1, BGLAP,
SPP1) and angiogenetic (VEGF, IL8)
pathways, through gene expression and protein release analysis, after LIPUS
stimuli. Results LIPUS exposure improved MgHA/Coll hybrid composite scaffold colonization and
induced in vitro osteogenic differentiation of hMSCs seeded on the
scaffold. Conclusions This work shows that the combined use of new biomimetic osteo-inductive
composite and LIPUS treatment could be a useful therapeutic approach in
order to accelerate bone regeneration pathways.
Collapse
|
12
|
Aw MS, Paniwnyk L. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater Sci 2017; 5:1944-1961. [DOI: 10.1039/c7bm00425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target.
Collapse
Affiliation(s)
- M. S. Aw
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| | - L. Paniwnyk
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| |
Collapse
|
13
|
Fabiilli ML, Phanse RA, Moncion A, Fowlkes JB, Franceschi RT. Use of Hydroxyapatite Doping to Enhance Responsiveness of Heat-Inducible Gene Switches to Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:824-30. [PMID: 26712417 PMCID: PMC4744111 DOI: 10.1016/j.ultrasmedbio.2015.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 05/04/2023]
Abstract
Recently, we demonstrated that ultrasound-based hyperthermia can activate cells containing a heat-activated and ligand-inducible gene switch in a spatio-temporally controlled manner. These engineered cells can be incorporated into hydrogel scaffolds (e.g., fibrin) for in vivo implantation, where ultrasound can be used to non-invasively pattern transgene expression. Due to their high water content, the acoustic attenuation of fibrin scaffolds is low. Thus, long ultrasound exposures and high acoustic intensities are needed to generate sufficient hyperthermia for gene activation. Here, we demonstrate that the attenuation of fibrin scaffolds and the resulting hyperthermia achievable with ultrasound can be increased significantly by doping the fibrin with hydroxyapatite (HA) nanopowder. The attenuation of a 1% (w/v) fibrin scaffold with 5% (w/v) HA was similar to soft tissue. Transgene activation of cells harboring the gene switch occurred at lower acoustic intensities and shorter exposures when the cells were encapsulated in HA-doped fibrin scaffolds versus undoped scaffolds. Inclusion of HA in the fibrin scaffold did not affect the viability of the encapsulated cells.
Collapse
Affiliation(s)
- Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| | - Rahul A Phanse
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Moncion
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an 'acoustic dose' and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.
Collapse
Affiliation(s)
| | - Regina Puts
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Alain Guignandon
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| |
Collapse
|
15
|
Clinical Application of Mesenchymal Stem Cells and Novel Supportive Therapies for Oral Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341327. [PMID: 26064899 PMCID: PMC4443638 DOI: 10.1155/2015/341327] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023]
Abstract
Bone regeneration is often needed prior to dental implant treatment due to the lack of adequate quantity and quality of the bone after infectious diseases, trauma, tumor, or congenital conditions. In these situations, cell transplantation technologies may help to overcome the limitations of autografts, xenografts, allografts, and alloplastic materials. A database search was conducted to include human clinical trials (randomized or controlled) and case reports/series describing the clinical use of mesenchymal stem cells (MSCs) in the oral cavity for bone regeneration only specifically excluding periodontal regeneration. Additionally, novel advances in related technologies are also described. 190 records were identified. 51 articles were selected for full-text assessment, and only 28 met the inclusion criteria: 9 case series, 10 case reports, and 9 randomized controlled clinical trials. Collectively, they evaluate the use of MSCs in a total of 290 patients in 342 interventions. The current published literature is very diverse in methodology and measurement of outcomes. Moreover, the clinical significance is limited. Therefore, the use of these techniques should be further studied in more challenging clinical scenarios with well-designed and standardized RCTs, potentially in combination with new scaffolding techniques and bioactive molecules to improve the final outcomes.
Collapse
|
16
|
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015; 84:45-67. [PMID: 25445719 PMCID: PMC4428953 DOI: 10.1016/j.addr.2014.11.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Dalecki D, Hocking DC. Ultrasound technologies for biomaterials fabrication and imaging. Ann Biomed Eng 2014; 43:747-61. [PMID: 25326439 DOI: 10.1007/s10439-014-1158-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Abstract
Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 310 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA,
| | | |
Collapse
|
18
|
Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D, Arruebo M, Wilson CG, Franceschi RT, Voellmy R, Santamaria J, Vilaboa N. Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 2014; 35:8134-8143. [PMID: 24957294 DOI: 10.1016/j.biomaterials.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/03/2014] [Indexed: 01/23/2023]
Abstract
We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ∼750 nm, a wavelength within the so called "tissue optical window", were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This non-invasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios.
Collapse
Affiliation(s)
- Francisco M Martin-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Virginia Cebrian
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Leyre Gomez
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
| | - Daniel Lopez
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Christopher G Wilson
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Renny T Franceschi
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Richard Voellmy
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
| | - Jesus Santamaria
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|