1
|
Duan X, Li N, Chen X, Zhu N. Characterization of Tissue Scaffolds Using Synchrotron Radiation Microcomputed Tomography Imaging. Tissue Eng Part C Methods 2021; 27:573-588. [PMID: 34670397 DOI: 10.1089/ten.tec.2021.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-μCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-μCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-μCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-μCT wide applications. We also discuss and highlight the unique opportunities of SR-μCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-μCT, along with its challenges and methods for improvement in the field of TE.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Canadian Light Source, Saskatoon, Canada
| |
Collapse
|
2
|
A Novel 3D Bioprinter Using Direct-Volumetric Drop-On-Demand Technology for Fabricating Micro-Tissues and Drug-Delivery. Int J Mol Sci 2020; 21:ijms21103482. [PMID: 32423161 PMCID: PMC7279004 DOI: 10.3390/ijms21103482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drop-on-demand (DOD) 3D bioprinting technologies currently hold the greatest promise for generating functional tissues for clinical use and for drug development. However, existing DOD 3D bioprinting technologies have three main limitations: (1) droplet volume inconsistency; (2) the ability to print only bioinks with low cell concentrations and low viscosity; and (3) problems with cell viability when dispensed under high pressure. We report our success developing a novel direct-volumetric DOD (DVDOD) 3D bioprinting technology that overcomes each of these limitations. DVDOD can produce droplets of bioink from <10 nL in volume using a direct-volumetric mechanism with <± 5% volumetric percent accuracy in an accurate spatially controlled manner. DVDOD has the capability of dispensing bioinks with high concentrations of cells and/or high viscosity biomaterials in either low- or high-throughput modes. The cells are subjected to a low pressure during the bioprinting process for a very short period of time that does not negatively impact cell viability. We demonstrated the functions of the bioprinter in two distinct manners: (1) by using a high-throughput drug-delivery model; and (2) by bioprinting micro-tissues using a variety of different cell types, including functional micro-tissues of bone, cancer, and induced pluripotent stem cells. Our DVDOD technology demonstrates a promising platform for generating many types of tissues and drug-delivery models.
Collapse
|
3
|
Yao T, Chen H, Baker MB, Moroni L. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2019; 26:11-22. [PMID: 31774033 DOI: 10.1089/ten.tec.2019.0232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascularization is a critical process during bone regeneration. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of regenerated bone. One strategy for improving the survival and osteogenesis of tissue-engineered bone grafts involves the coculture of endothelial cells (ECs) with mesenchymal stromal cells (MSCs). Moreover, bone regeneration is especially challenging due to its unique structural properties with aligned topographical cues, with which stem cells can interact. Inspired by the aligned fibrillar nanostructures in human cancellous bone, we fabricated polycaprolactone (PCL) electrospun fibers with aligned and random morphology, cocultured human MSCs with human umbilical vein ECs (HUVECs), and finally investigated how these two factors modulate osteogenic differentiation of human MSCs (hMSCs). After optimizing cell ratio, a hMSCs/HUVECs ratio (90:10) was considered to be the best combination for osteogenic differentiation. Coculture results showed that hMSCs and HUVECs adhered to and proliferated well on both scaffolds. The aligned structure of PCL fibers strongly influenced the morphology and orientation of hMSCs and HUVECs; however, fiber alignment was observed to not affect alkaline phosphate (ALP) activity or mineralization of hMSCs compared with random scaffolds. More importantly, cocultured cells on both random and aligned scaffolds had significantly higher ALP activities than monoculture groups, which indicated that coculture with HUVECs provided a larger relative contribution to the osteogenesis of hMSCs compared with fiber alignment. Taken together, we conclude that coculture of hMSCs with ECs is an effective strategy to promote osteogenesis on electrospun scaffolds, and aligned fibers could be introduced to regenerate bone tissues with oriented topography without significant deleterious effects on hMSCs differentiation. This study shows the ability to grow oriented tissue-engineered cocultures with significant increases in osteogenesis over monoculture conditions. Impact statement This work demonstrates an effective method of enhancing osteogenesis of mesenchymal stromal cells on electrospun scaffolds through coculturing with endothelial cells. Furthermore, we provide the optimized conditions for cocultures on electrospun fibrous scaffolds and engineered bone tissues with oriented topography on aligned fibers. This study demonstrates promising findings for growing oriented tissue-engineered cocultures with significant increase in osteogenesis over monoculture conditions.
Collapse
Affiliation(s)
- Tianyu Yao
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Honglin Chen
- Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Matthew B Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Cho E, Kim YY, Noh K, Ku SY. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Conventional fertility preservation methods such as oocyte or embryo cryopreservation are currently insufficient to treat including those patients with prepubertal cancer and premature ovarian failure. Ovarian tissue cryopreservation presents as an alternative but has limitations with a potential risk of reintroducing malignant cells in patients who recover from cancer, those of chemotherapy prior to tissue cryopreservation. The so called "artificial ovary" aims to resolve this issue by transplanting isolated follicles with or without a biological scaffold. The artificial ovary may also offer an effective alternative option for those who cannot benefit from traditional assisted reproductive techniques such as in vitro fertilisation. To date, in animal studies and human trial, the artificial ovary restored endocrine function, achieved in vivo follicular development, and resulted in successful pregnancies. However, development of a technique for higher follicular recovery rate and a more optimised design of delivery scaffold, better transplantation techniques to prevent postsurgical ischemia, and consideration for genetic safety are required for safer and consistent human clinical applications. Ideas from different transplantation surgeries (e.g., entire ovary, ovarian cortex, and transplantation with tissue-engineered products) can be applied to enhance the efficacy of artificial ovarian transplantation. For the better application of artificial ovary, a deeper understanding of mechanical and biochemical properties of the ovary and folliculogenesis after cryopreservation, transplantation with or without scaffold, and development of sophisticated in vivo imaging techniques of transplanted artificial ovary need to precede its efficient clinical application.
Collapse
Affiliation(s)
- Eun Cho
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Young Kim
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Kevin Noh
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Seung-Yup Ku
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
5
|
Yazmir B, Reiner M. Neural Correlates of User-initiated Motor Success and Failure – A Brain–Computer Interface Perspective. Neuroscience 2018; 378:100-112. [DOI: 10.1016/j.neuroscience.2016.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 09/02/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023]
|
6
|
Stiers PJ, van Gastel N, Moermans K, Stockmans I, Carmeliet G. An Ectopic Imaging Window for Intravital Imaging of Engineered Bone Tissue. JBMR Plus 2018; 2:92-102. [PMID: 30283894 PMCID: PMC6124161 DOI: 10.1002/jbm4.10028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering is a promising branch of regenerative medicine, but its clinical application remains limited because thorough knowledge of the in vivo repair processes in these engineered implants is limited. Common techniques to study the different phases of bone repair in mice are destructive and thus not optimal to gain insight into the dynamics of this process. Instead, multiphoton‐intravital microscopy (MP‐IVM) allows visualization of (sub)cellular processes at high resolution and frequency over extended periods of time when combined with an imaging window that permits optical access to implants in vivo. In this study, we have developed and validated an ectopic imaging window that can be placed over a tissue‐engineered construct implanted in mice. This approach did not interfere with the biological processes of bone regeneration taking place in these implants, as evidenced by histological and micro–computed tomography (μCT)‐based comparison to control ectopic implants. The ectopic imaging window permitted tracking of individual cells over several days in vivo. Furthermore, the use of fluorescent reporters allowed visualization of the onset of angiogenesis and osteogenesis in these constructs. Taken together, this novel imaging window will facilitate further analysis of the spatiotemporal regulation of cellular processes in bone tissue–engineered implants and provides a powerful tool to enhance the therapeutic potential of bone tissue engineering. © 2017 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pieter-Jan Stiers
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Ingrid Stockmans
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| |
Collapse
|
7
|
Sun W, Sun Y, Klar AS, Geutjes P, Reichmann E, Heerschap A, Oosterwijk E. Functional Analysis of Vascularized Collagen/Fibrin Templates by MRI In Vivo. Tissue Eng Part C Methods 2016; 22:747-55. [PMID: 27324220 DOI: 10.1089/ten.tec.2016.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Functional monitoring of the fate of implanted templates, which restore the function of lost tissues, is still a challenge. Whereas histology can give excellent insight into material and tissue remodeling, longitudinal studies are hampered by the invasive character. Noninvasive imaging techniques, which allow longitudinal studies in the same individual and provide functional information, might be beneficial. In this study, magnetic resonance imaging (MRI) was applied as a noninvasive tool to monitor the progress of vasculogenesis and inosculation in in vitro prevascularized collagen/fibrin templates implanted in mice during a period of 4 weeks. MRI results were compared with histological findings to evaluate whether the two technologies were complementary and to evaluate the added value of MRI. When in vitro prevascularized templates were implanted in mice, histological analysis showed the presence of mouse blood cells in the engineered vessels 2 weeks after implantation. The MR images showed that template perfusion, a measure of vascularity, became significant at 3 weeks. For tissue engineering purposes, contrast-enhanced MRI appears to be an attractive tool to evaluate the vascular outcome longitudinally without the need to sacrifice animals and the functional information can be superimposed on the static histological information.
Collapse
Affiliation(s)
- Weilun Sun
- 1 Radboudumc, Department of Urology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Yi Sun
- 2 Radboudumc , Department of Radiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Agnes S Klar
- 3 Tissue Biology Research Unit, Department of Surgery, University Children's Hospital , Zurich, Switzerland
| | - Paul Geutjes
- 1 Radboudumc, Department of Urology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Ernst Reichmann
- 3 Tissue Biology Research Unit, Department of Surgery, University Children's Hospital , Zurich, Switzerland
| | - Arend Heerschap
- 2 Radboudumc , Department of Radiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- 1 Radboudumc, Department of Urology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| |
Collapse
|