1
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
Snyder CA, Dwyer KD, Coulombe KLK. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int J Mol Sci 2024; 25:9627. [PMID: 39273573 PMCID: PMC11395605 DOI: 10.3390/ijms25179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Caroline A Snyder
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kiera D Dwyer
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L K Coulombe
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
4
|
English EJ, Samolyk BL, Gaudette GR, Pins GD. Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue. J Biomed Mater Res A 2023; 111:1309-1321. [PMID: 36932841 PMCID: PMC11128133 DOI: 10.1002/jbm.a.37530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.
Collapse
Affiliation(s)
- Elizabeth J. English
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Tessera Therapeutics, Somerville, Massachusetts, USA
| | - Bryanna L. Samolyk
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Glenn R. Gaudette
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Engineering, Boston College, Newton, Massachusetts, USA
| | - George D. Pins
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
6
|
Kant RJ, Dwyer KD, Lee JH, Polucha C, Kobayashi M, Pyon S, Soepriatna AH, Lee J, Coulombe KLK. Patterned Arteriole-Scale Vessels Enhance Engraftment, Perfusion, and Vessel Branching Hierarchy of Engineered Human Myocardium for Heart Regeneration. Cells 2023; 12:1698. [PMID: 37443731 PMCID: PMC10340601 DOI: 10.3390/cells12131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 μm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kareen L. K. Coulombe
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (R.J.K.)
| |
Collapse
|
7
|
Dwyer KD, Kant RJ, Soepriatna AH, Roser SM, Daley MC, Sabe SA, Xu CM, Choi BR, Sellke FW, Coulombe KLK. One Billion hiPSC-Cardiomyocytes: Upscaling Engineered Cardiac Tissues to Create High Cell Density Therapies for Clinical Translation in Heart Regeneration. Bioengineering (Basel) 2023; 10:587. [PMID: 37237658 PMCID: PMC10215511 DOI: 10.3390/bioengineering10050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm). Meso-ECTs exhibited a hiPSC-CM dose-dependent response in structure and mechanics, with high-density ECTs displaying reduced elastic modulus, collagen organization, prestrain development, and active stress generation. Scaling up, cell-dense macro-ECTs were able to follow point stimulation pacing without arrhythmogenesis. Finally, we successfully fabricated a mega-ECT at clinical scale containing 1 billion hiPSC-CMs for implantation in a swine model of chronic myocardial ischemia to demonstrate the technical feasibility of biomanufacturing, surgical implantation, and engraftment. Through this iterative process, we define the impact of manufacturing variables on ECT formation and function as well as identify challenges that must still be overcome to successfully accelerate ECT clinical translation.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
| | - Rajeev J. Kant
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
| | - Arvin H. Soepriatna
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
| | - Stephanie M. Roser
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
| | - Mark C. Daley
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
| | - Sharif A. Sabe
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Cynthia M. Xu
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W. Sellke
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Kareen L. K. Coulombe
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (K.D.D.)
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
8
|
Soepriatna AH, Navarrete-Welton A, Kim TY, Daley MC, Bronk P, Kofron CM, Mende U, Coulombe KLK, Choi BR. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS One 2023; 18:e0280406. [PMID: 36745602 PMCID: PMC9901774 DOI: 10.1371/journal.pone.0280406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/28/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.
Collapse
Affiliation(s)
- Arvin H. Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Allison Navarrete-Welton
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mark C. Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Peter Bronk
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Celinda M. Kofron
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tiburcy M, Meyer T, Satin PL, Zimmermann WH. Defined Engineered Human Myocardium for Disease Modeling, Drug Screening, and Heart Repair. Methods Mol Biol 2022; 2485:213-225. [PMID: 35618908 DOI: 10.1007/978-1-0716-2261-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Different engineered heart muscle formats have been developed for applications in disease modeling, drug screening, and heart repair. The advantage of 3D engineered versus 2D monolayer and 3D aggregate cardiomyocyte cultures is a clearly advanced degree of maturation, which in many aspects resembles the postnatal rather than the embryonic or fetal heart, in the most advanced 3D culture formats. According to the desired in vitro (disease modeling or drug screening) and in vivo (heart repair) application, scale and geometry of tissue engineered heart muscle must be adapted. In this updated methods paper, we report a simple and scalable (up and down) collagen-based protocol for the construction of Engineered Human Myocardium (EHM) under defined, serum-free conditions.
Collapse
Affiliation(s)
- Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Pierre-Luc Satin
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany.
| |
Collapse
|
10
|
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have profound utility in generating functional human engineered cardiac tissues (ECT) for heart repair. However, the field at large is concerned about the relative immaturity of these hiPSC-CMs as we aim to develop clinically relevant models for regenerative therapy and drug testing. Herein, we develop a novel calcium (Ca2+) conditioning protocol that maintains ECTs in a physiological range of Ca2+ and assesses contractility in increasing calcium environments. Lactate-based selection served as a method to purify and shift the metabolic profile of hiPSC-CMs to evaluate the role of metabolism on Ca2+ sensitivity. After 2 weeks, we observe 2-fold greater peak twitch stress in high-Ca2+ conditioned ECTs, despite having lower stiffness and no change in Ca2+ sensitivity of twitch force. Interestingly, the force-calcium relationship reveals higher Ca2+ sensitivity in lactate conditioned tissues, suggesting that metabolic maturation alters mitochondrial Ca2+ buffering and regulation. Ca2+ sensitivity and force amplitude are not coupled, as lactate conditioned tissues produce force comparable to that of controls in high calcium environments. An upregulation of calcium handling protein gene expression likely contributes to the greater Ca2+ sensitivity in lactate conditioned hiPSC-CMs. Our findings support the use of physiological Ca2+ to enhance the functional maturation of excitation-contraction coupling in hiPSC-CMs and demonstrate that metabolic changes induced by lactate conditioning alter cardiomyocyte sensitivity to external Ca2+. These conditioning methods may be used to advance the development of engineered human cardiac tissue for translational applications in vitro and in vivo as a regenerative therapy.
Collapse
Affiliation(s)
- Alicia J Minor
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
- Corresponding author: Kareen L.K. Coulombe, PhD, Brown University, Center for Biomedical Engineering, School of Engineering, 184 Hope Street, Box D, Providence, RI 02912, USA. Tel: 401-863-2318;
| |
Collapse
|
11
|
Kant RJ, Bare CF, Coulombe KL. Tissues with Patterned Vessels or Protein Release Induce Vascular Chemotaxis in an In Vitro Platform. Tissue Eng Part A 2021; 27:1290-1304. [PMID: 33472529 PMCID: PMC8610033 DOI: 10.1089/ten.tea.2020.0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered tissues designed for translational applications in regenerative medicine require vascular networks to deliver oxygen and nutrients rapidly to the implanted cells. A limiting factor of in vivo translation is the rapid and successful inosculation, or connection, of host and implanted vascular networks and subsequent perfusion of the implant. An approach gaining favor in vascular tissue engineering is to provide instructive cues from the engineered tissue to enhance host vascular penetration and connection with the implant. Here, we use a novel in vitro platform based on the aortic ring assay to evaluate the impact of patterned, endothelialized vessels or growth factor release from engineered constructs on preinosculative vascular cell outgrowth from surrogate host tissue in a controlled, defined environment, and introduce robust tools for evaluating vascular morphogenesis and chemotaxis. We demonstrate the creation of engineered vessels at the arteriole scale, which develop basement membrane, exhibit tight junctions, and actively sprout into the surrounding bulk hydrogel. Vessel-containing constructs are co-cultured adjacent to rodent aortic rings, and the resulting heterocellular outgrowth is quantified. Cells originating from the aortic ring migrate preferentially toward constructs containing engineered vessels with 1.5-fold faster outgrowth kinetics, 2.5-fold increased cellular density, and 1.6-fold greater network formation versus control (no endothelial cells and growth factor-reduced culture medium). Growth factor release from constructs with nonendothelialized channels and in reduced factor medium equivalently stimulates sustained vascular outgrowth distance, cellular density, and network formation, akin to engineered vessels in endothelial growth medium 2 (EGM-2) medium. In conclusion, we show that three-dimensional endothelialized patterned vessels or growth factor release stimulate a robust, host-derived vascular cell chemotactic response at early time points critical for instructive angiogenic cues. Further, we developed robust, unbiased tools to quantify metrics of vascular morphogenesis and preinosculative heterocellular outgrowth from rat aortic rings and demonstrated the utility of our complex, controlled environment, heterocellular in vitro platform. Impact statement Using a novel in vitro platform, we show that engineered constructs with patterned vessels or angiogenic growth factor release, two methods of instructing host revascularization responses, equivalently improve early host-derived vascular outgrowth. Our platform leverages the aortic ring assay in a tissue engineering context to study preinosculative vascular cell chemotaxis from surrogate host vascular cells in response to paracrine cues from co-cultured engineered tissues using robust, open-source quantification tools. Our accessible and flexible platform enables translationally focused studies in revascularization using implantable therapeutics containing prepatterned vessels with greater environmental control than in vivo studies to advance vascular tissue engineering.
Collapse
Affiliation(s)
- Rajeev J. Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Colette F. Bare
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Reid JA, Dwyer KD, Schmitt PR, Soepriatna AH, Coulombe KLK, Callanan A. Architected fibrous scaffolds for engineering anisotropic tissues. Biofabrication 2021; 13:10.1088/1758-5090/ac0fc9. [PMID: 34186522 PMCID: PMC8686077 DOI: 10.1088/1758-5090/ac0fc9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mimicking the native three-dimensional microenvironment is of crucial importance when biofabricating a new healthcare material. One aspect of the native tissue that is often omitted when designing a suitable scaffold is its anisotropy. Not only is matching native mechanical properties important when designing implantable scaffolds or healthcare materials, but matching physiological structure is also important as many cell populations respond differently to fiber orientation. Therefore, novel aligned electrospun scaffolds with varying fiber angles and spacing of bundles were created and mechanically characterized. Through controlling the angle between the fibers in each layer of the scaffold, a range of different physiological anisotropic mechanical properties were achieved that encompasses values found in native tissues. Extrapolation of this mechanical data allowed for any native tissue's anisotropic Young's modulus to be mimicked by electrospinning fibers at a particular angle. These electrospun scaffolds were then incorporated with cell-laden hydrogels to create hybrid structures that contain the benefits of both scaffolding techniques with the ability to encapsulate cells in the hydrogel. To conclude, this study develops a novel bundled fiber scaffold that was architected to yield anisotropic properties matching native tissues.
Collapse
Affiliation(s)
- James Alexander Reid
- Institure for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
- Joint first authorship
| | - Kiera D Dwyer
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
- Joint first authorship
| | - Phillip R Schmitt
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Arvin H Soepriatna
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Kareen LK Coulombe
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, United States of America
| | - Anthony Callanan
- Institure for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering. J Mech Behav Biomed Mater 2021; 121:104627. [PMID: 34130078 DOI: 10.1016/j.jmbbm.2021.104627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
Cardiac patch therapies promise to restore heart function and lower the risk of heart failure after heart attack. Fiber-matrix engineered tissue scaffolds have gained significant attention due to their tunable micro-structures, providing nonlinear mechanical properties similar to native anisotropic heart tissues. Mechanical properties of engineered scaffolds directly affect the stress fields generated inside and around the tissue scaffolds and have significant impact on the tissue functionality. Currently, biomedical cardiac patches are designed through experimentation and there exists a need for an accurate model that will allow micro-structural design optimization and analysis of effectiveness of the implanted patches. We have developed a three-dimensional large strain continuum model that can predict nonlinear, anisotropic mechanical response of engineered tissue scaffolds that have two orientation families of fibers inside a bulk hydrogel matrix. We have validated the predictive capability of our continuum model for the fiber-matrix composite using selected experiments and a suite of detailed finite element analysis that incorporated the micro-structural details of the composites. Comparing the continuum model predictions (1 element) against the representative volume micro-structural geometry finite element simulations (with greater than 4,00,000 elements), we show that the proposed model can accurately predict nonlinear mechanical behavior of highly anisotropic tissue scaffolds in both the longitudinal and transverse directions, as a function of the critical design parameters inter-fiber angle and fiber spacing. We show that the model can also capture native heart tissue's anisotropic large strain mechanical response. We implemented our model in the finite element software Abaqus by writing a user material subroutine UANISOHYPER and demonstrated its predictive abilities by conducting a full three-dimensional analysis of engineered tissue patch application on an infarcted heart.
Collapse
|
15
|
Shi N, Li Y, Chang L, Zhao G, Jin G, Lyu Y, Genin GM, Ma Y, Xu F. A 3D, Magnetically Actuated, Aligned Collagen Fiber Hydrogel Platform Recapitulates Physical Microenvironment of Myoblasts for Enhancing Myogenesis. SMALL METHODS 2021; 5:e2100276. [PMID: 34927916 DOI: 10.1002/smtd.202100276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Indexed: 06/14/2023]
Abstract
Many cell responses that underlie the development, maturation, and function of tissues are guided by the architecture and mechanical loading of the extracellular matrix (ECM). Because mechanical stimulation must be transmitted through the ECM architecture, the synergy between these two factors is important. However, recapitulating the synergy of these physical microenvironmental cues in vitro remains challenging. To address this, a 3D magnetically actuated collagen hydrogel platform is developed that enables combined control of ECM architecture and mechanical stimulation. With this platform, it is demonstrated how these factors synergistically promote cell alignment of C2C12 myoblasts and enhance myogenesis. This promotion is driven in part by the dynamics of Yes-associated protein and structure of cellular microtubule networks. This facile platform holds great promises for regulating cell behavior and fate, generating a broad range of engineered physiologically representative microtissues in vitro, and quantifying the mechanobiology underlying their functions.
Collapse
Affiliation(s)
- Nianyuan Shi
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Chang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Yu J, Cai P, Chen X. Structural Regulation of Myocytes in Engineered Healthy and Diseased Cardiac Models. ACS APPLIED BIO MATERIALS 2021; 4:267-276. [DOI: 10.1021/acsabm.0c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
17
|
Munarin F, Kant RJ, Rupert CE, Khoo A, Coulombe KLK. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 2020; 251:120033. [PMID: 32388033 PMCID: PMC8115013 DOI: 10.1016/j.biomaterials.2020.120033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Heart regeneration after myocardial infarction requires new cardiomyocytes and a supportive vascular network. Here, we evaluate the efficacy of localized delivery of angiogenic factors from biomaterials within the implanted muscle tissue to guide growth of a more dense, organized, and perfused vascular supply into implanted engineered human cardiac tissue on an ischemia/reperfusion injured rat heart. We use large, aligned 3-dimensional engineered tissue with cardiomyocytes derived from human induced pluripotent stem cells in a collagen matrix that contains dispersed alginate microspheres as local protein depots. Release of angiogenic growth factors VEGF and bFGF in combination with morphogen sonic hedgehog from the microspheres into the local microenvironment occurs from the epicardial implant site. Analysis of the 3D vascular network in the engineered tissue via Microfil® perfusion and microCT imaging at 30 days shows increased volumetric network density with a wider distribution of vessel diameters, proportionally increased branching and length, and reduced tortuosity. Global heart function is increased in the angiogenic factor-loaded cardiac implants versus sham. These findings demonstrate for the first time the efficacy of a combined remuscularization and revascularization therapy for heart regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Fabiola Munarin
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Cassady E Rupert
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Amelia Khoo
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA.
| |
Collapse
|
18
|
Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium. Stem Cells Int 2020; 2020:9363809. [PMID: 32724316 PMCID: PMC7381987 DOI: 10.1155/2020/9363809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Cardiac tissue engineering using hiPSC-derived cardiomyocytes is a promising avenue for cardiovascular regeneration, pharmaceutical drug development, cardiotoxicity evaluation, and disease modeling. Limitations to these applications still exist due in part to the need for more robust structural support, organization, and electromechanical function of engineered cardiac tissues. It is well accepted that heterotypic cellular interactions impact the phenotype of cardiomyocytes. The current study evaluates the functional effects of coculturing adult human cardiac fibroblasts (hCFs) in 3D engineered tissues on excitation and contraction with the goal of recapitulating healthy, nonarrhythmogenic myocardium in vitro. A small population (5% of total cell number) of hCFs in tissues improves tissue formation, material properties, and contractile function. However, two perturbations to the hCF population create disease-like phenotypes in engineered cardiac tissues. First, increasing the percentage of hCFs to 15% resulted in tissues with increased ectopic activity and spontaneous excitation rate. Second, hCFs undergo myofibroblast activation in traditional two-dimensional culture, and this altered phenotype ablated the functional benefits of hCFs when incorporated into engineered cardiac tissues. Taken together, the results of this study demonstrate that human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes and that a low percentage of quiescent hCFs are a valuable cell source to advance a healthy electromechanical response of engineered cardiac tissue for regenerative medicine applications.
Collapse
|
19
|
Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel nanocomposites. NANOSCALE 2020; 12:10456-10473. [PMID: 32388540 DOI: 10.1039/d0nr01456g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels are widely implemented as key materials in various biomedical applications owing to their soft, flexible, hydrophilic, and quasi-solid nature. Recently, however, new material properties over those of bare hydrogels have been sought for novel applications. Accordingly, hydrogel nanocomposites, i.e., hydrogels converged with nanomaterials, have been proposed for the functional transformation of conventional hydrogels. The incorporation of suitable nanomaterials into the hydrogel matrix allows the hydrogel nanocomposite to exhibit multi-functionality in addition to the biocompatible feature of the original hydrogel. Therefore, various hydrogel composites with nanomaterials, including nanoparticles, nanowires, and nanosheets, have been developed for diverse purposes, such as catalysis, environmental purification, bio-imaging, sensing, and controlled drug delivery. Furthermore, novel technologies for the patterning of such hydrogel nanocomposites into desired shapes have been developed. The combination of such material engineering and processing technologies has enabled the hydrogel nanocomposite to become a key soft component of electronic, electrochemical, and biomedical devices. We herein review the recent research trend in the field of hydrogel nanocomposites, particularly focusing on materials engineering, processing, and device applications. Furthermore, the conclusions are presented with the scope of future research outlook, which also includes the current technical limitations.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Rupert CE, Irofuala C, Coulombe KLK. Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques. PLoS One 2020; 15:e0230001. [PMID: 32155214 PMCID: PMC7064240 DOI: 10.1371/journal.pone.0230001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are a valuable resource for cardiac therapeutic development; however, generation of these cells in large numbers and high purity is a limitation in widespread adoption. Here, design of experiments (DOE) is used to investigate the cardiac differentiation space of three hiPSC lines when varying CHIR99027 concentration and cell seeding density, and a novel image analysis is developed to evaluate plate coverage when initiating differentiation. Metabolic selection via lactate purifies hiPSC-cardiomyocyte populations, and the bioenergetic phenotype and engineered tissue mechanics of purified and unpurified hiPSC-cardiomyocytes are compared. Findings demonstrate that when initiating differentiation one day after hiPSC plating, low (3 μM) Chiron and 72 x 103 cells/cm2 seeding density result in peak cardiac purity (50-90%) for all three hiPSC lines. Our results confirm that metabolic selection with lactate shifts hiPSC-cardiomyocyte metabolism towards oxidative phosphorylation, but this more "mature" metabolic phenotype does not by itself result in a more mature contractile phenotype in engineered cardiac tissues at one week of culture in 3D tissues. This study provides widely adaptable methods including novel image analysis code and parameters for refining hiPSC-cardiomyocyte differentiation and describes the practical implications of metabolic selection of cardiomyocytes for downstream tissue engineering applications.
Collapse
Affiliation(s)
- Cassady E. Rupert
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Chinedu Irofuala
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| |
Collapse
|
21
|
Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019; 25:687-700. [PMID: 31017039 PMCID: PMC6859695 DOI: 10.1089/ten.tec.2018.0379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
A great variety of natural and synthetic polymer materials have been utilized in soft tissue engineering as extracellular matrix (ECM) materials. Natural polymers, such as collagen and fibrin hydrogels, have experienced especially broad adoption due to the high density of cell adhesion sites compared to their synthetic counterparts, ready availability, and ease of use. However, these and other hydrogels lack the structural and mechanical anisotropy that define the ECM in many tissues, such as skeletal and cardiac muscle, tendon, and cartilage. Herein, we present a facile, low-cost, and automated method of preparing collagen microfibers, organizing these fibers into precisely controlled mesh designs, and embedding these meshes in a bulk hydrogel, creating a composite biomaterial suitable for a wide variety of tissue engineering and regenerative medicine applications. With the assistance of custom software tools described herein, mesh patterns are designed by a digital graphical user interface and translated into protocols that are executed by a custom mesh collection and organization device. We demonstrate a high degree of precision and reproducibility in both fiber and mesh fabrication, evaluate single fiber mechanical properties, and provide evidence of collagen self-assembly in the microfibers under standard cell culture conditions. This work offers a powerful, flexible platform for the study of tissue engineering and cell material interactions, as well as the development of therapeutic biomaterials in the form of custom collagen microfiber patterns that will be accessible to all through the methods and techniques described here. Impact Statement Collagen microfiber meshes have immediate and broad applications in tissue engineering research and show high potential for later use in clinical therapeutics due to their compositional similarities to native extracellular matrix and tunable structural and mechanical characteristics. Physical and biological characterizations of these meshes demonstrate physiologically relevant mechanical properties, native-like collagen structure, and cytocompatibility. The methods presented herein not only describe a process through which custom collagen microfiber meshes can be fabricated but also provide the reader with detailed device plans and software tools to produce their own bespoke meshes through a precise, consistent, and automated process.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Jessica A Bellows
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
22
|
Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng 2018; 5:887-899. [PMID: 30775432 PMCID: PMC6372981 DOI: 10.1021/acsbiomaterials.8b01112] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
![]()
Natural
polymer hydrogels are used ubiquitously as scaffold materials
for cardiac tissue engineering as well as for soft tissue engineering
more broadly because of FDA approval, minimal immunogenicity, and
well-defined physiological clearance pathways. However, the relationships
between natural polymer hydrogels and resident cell populations in
directing the development of engineered tissues are poorly defined.
This interaction is of particular concern for tissues prepared
with iPSC-derived cell populations, in which population purity and
batch-to-batch variability become additional critical factors to consider.
Herein, the design space for a blended fibrin and collagen scaffold
is characterized for applications in creating engineered myocardium
with human iPSC-derived cardiomyocytes. Stiffness values of the acellular
hydrogel formulations approach those of native myocardium in compression,
but deviate significantly in tension when compared to rat myocardium
in both transverse and longitudinal fiber orientations. A response
surface methodology approach to understanding the relationship between
collagen concentration, fibrin concentration, seeding density, and
cardiac purity found a statistically significant predictive model
across three repeated studies that confirms that all of these factors
contribute to tissue compaction. In these constructs, increased fibrin
concentration and seeding density were each associated with increased
compaction, while increased collagen concentration was associated
with decreased compaction. Both the lowest (24.4% cTnT+) and highest (60.2% cTnT+) cardiomyocyte purities evaluated
were associated with decreased compaction, whereas the greatest compaction
was predicted to occur in constructs prepared with a 40–50%
cTnT+ population. Constructs prepared with purified cardiomyocytes
(≥75.5% cTnT+) compacted and formed syncytia well,
although increased fibrin concentration in these groups was associated
with decreased compaction, a reversal of the trend observed in unpurified
cardiomyocytes. This study demonstrates an analytical approach to
understanding cell–scaffold interactions in engineered tissues
and provides a foundation for the development of more sophisticated
and customized scaffold platforms for human cardiac tissue engineering.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
23
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
24
|
Kaiser NJ, Munarin F, Coulombe KLK. Custom Engineered Tissue Culture Molds from Laser-etched Masters. J Vis Exp 2018. [PMID: 29863678 DOI: 10.3791/57239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As the field of tissue engineering has continued to mature, there has been increased interest in a wide range of tissue parameters, including tissue shape. Manipulating tissue shape on the micrometer to centimeter scale can direct cell alignment, alter effective mechanical properties, and address limitations related to nutrient diffusion. In addition, the vessel in which a tissue is prepared can impart mechanical constraints on the tissue, resulting in stress fields that can further influence both the cell and matrix structure. Shaped tissues with highly reproducible dimensions also have utility for in vitro assays in which sample dimensions are critical, such as whole tissue mechanical analysis. This manuscript describes an alternative fabrication method utilizing negative master molds prepared from laser etched acrylic: these molds perform well with polydimethylsiloxane (PDMS), permit designs with dimensions on the centimeter scale and feature sizes smaller than 25 µm, and can be rapidly designed and fabricated at a low cost and with minimal expertise. The minimal time and cost requirements allow for laser etched molds to be rapidly iterated upon until an optimal design is determined, and to be easily adapted to suit any assay of interest, including those beyond the field of tissue engineering.
Collapse
|
25
|
Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems. Int J Artif Organs 2018; 41:213-222. [DOI: 10.5301/ijao.5000667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background:To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems.Methods:Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated.Results:Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected.Conclusions:Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.
Collapse
|
26
|
Rupert CE, Coulombe KLK. IGF1 and NRG1 Enhance Proliferation, Metabolic Maturity, and the Force-Frequency Response in hESC-Derived Engineered Cardiac Tissues. Stem Cells Int 2017; 2017:7648409. [PMID: 28951744 PMCID: PMC5603111 DOI: 10.1155/2017/7648409] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) and neuregulin-1β (NRG1) play important roles during cardiac development both individually and synergistically. In this study, we analyze how 3D cardiac tissue engineered from human embryonic stem cell- (hESC-) derived cardiomyocytes and 2D-plated hESC-cardiomyocytes respond to developmentally relevant growth factors both to stimulate maturity and to characterize the therapeutic potential of IGF1 and NRG1. When administered to engineered cardiac tissues, a significant decrease in active force production of ~65% was measured in all treatment groups, likely due to changes in cellular physiology. Developmentally related processes were identified in engineered tissues as IGF1 increased hESC-cardiomyocyte proliferation 3-fold over untreated controls and NRG1 stimulated oxidative phosphorylation and promoted a positive force-frequency relationship in tissues up to 3 Hz. hESC-cardiomyocyte area increased significantly with NRG1 and IGF1 + NRG1 treatment in 2D culture and gene expression data suggested increased cardiac contractile components in engineered tissues, indicating the need for functional analysis in a 3D platform to accurately characterize engineered cardiac tissue response to biochemical stimulation. This study demonstrates the therapeutic potential of IGF1 for boosting proliferation and NRG1 for promoting metabolic and contractile maturation in engineered human cardiac tissue.
Collapse
Affiliation(s)
- Cassady E. Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|