1
|
Füge L, Schüssler F, Gerhardus J, Schwab R, Harms G, Hasenburg A, Blaeser A, Brenner W, Peters K. Comparative Analysis of Hydrogels From Porcine Extracellular Matrix for 3D Bioprinting of Adipose Tissue. J Biomed Mater Res A 2025; 113:e37832. [PMID: 40165526 DOI: 10.1002/jbm.a.37832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 04/02/2025]
Abstract
The extracellular matrix (ECM) is the natural scaffold of all soft tissues in tissue engineering. Of special interest is the use of ECM as a hydrogel, which can be used to enclose cells and to be molded into any form by 3D bioprinting. Protocols for the preparation of ECM vary in the use of physical and chemical processing steps, the use of different detergents for decellularization, and the removal of DNA and RNA residues and show a different use of solvents and wash buffers. We have, therefore, compared seven different variations for the decellularization of a primary porcine isolate to manufacture decellularized adipose tissue (DAT) for their use in adipose tissue engineering and as a hydrogel in particular. Decellularization efficacy was assessed by DNA quantification while retention of ECM components was evaluated by measuring the content of hydroxyproline and glycosaminoglycan (GAGs). Depending on the decellularization protocol, the composition and DNA content of the resulting DAT were different. All DAT samples were processed into hydrogels to assess their mechanical properties as well as their influence on cellular metabolic activity and cell differentiation. The different compositions of the DAT and the resulting hydrogels had an effect on the stability and printability of the gels. Some DAT that were digested with hydrochloric acid (HCl) were more stable than those that were digested with acetic acid (AA). In addition, depending on the protocol, there was a clear effect on adipose-derived stem cells (ASC), endothelial cells and fibroblasts, cultured with the hydrogels. The differentiation of ASC to adipocytes could be achieved on most of the hydrogels. Human dermal microvascular endothelial cells (HDMEC) showed significantly better metabolic activity on hydrogels digested with HCl than digested with AA. HDMEC cultured on hydrogel #2 digested with HCl showed a 40% higher metabolic activity compared to collagen as a positive control, whereas culturing HDMEC on hydrogel #2 digested with AA resulted in a cellular metabolic activity loss of 60%. In a triculture of all three cell types, the formation of first tubular networks by HDMEC was achieved depending on the hydrogel used.
Collapse
Affiliation(s)
- Leonie Füge
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Schüssler
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jamina Gerhardus
- BioMedical Printing Technology, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
| | - Roxana Schwab
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, USA
| | - Annette Hasenburg
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Blaeser
- BioMedical Printing Technology, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BiomaTiCS - Biomaterials, Tissues and Cells in Science, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Peters
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BiomaTiCS - Biomaterials, Tissues and Cells in Science, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
3
|
Peters K, Wiesmann N, Heimes D, Schwab R, Kämmerer PW, Al-Nawas B, Unger RE, Hasenburg A, Brenner W. Extracorporeal Shock Wave Therapy Improves In Vitro Formation of Multilayered Epithelium of Oral Mucosa Equivalents. Biomedicines 2022; 10:biomedicines10030700. [PMID: 35327502 PMCID: PMC8945876 DOI: 10.3390/biomedicines10030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oral mucosa is used in various surgical fields as a graft for the reconstruction of tissue defects. Tissue engineering of oral mucosa equivalents using autologous cells represents a suitable less burdensome alternative. The survival of the multilayered epithelium is essential for the functionality of the tissues in vivo. To ensure its functionality after transplantation, mucosa equivalents in vitro were subjected to extracorporeal shock wave therapy (ESWT) to determine whether this treatment stimulated the formation and differentiation of the epithelium. Mucosa equivalents treated with ESWT were examined for cellular metabolic activity using AlamarBlueTM assay. The formation of vascular structures, basement membrane, and multilayered epithelium were examined using confocal fluorescence microscopy and immunohistochemistry. The potential ingrowth in vivo was simulated using the chorioallantoic membrane model (CAM assay) in ovo. ESWT on culture day 19 of oral mucosa equivalents resulted in slightly increased cellular metabolic activity. The in vitro development of basement membrane and multilayer epithelium was stimulated by ESWT. Additionally, in the CAM assay, ESWT led to a more pronounced multilayered epithelium. Thus, ESWT stimulated the formation of a more distinct and differentiated multilayered epithelium of oral mucosa equivalents in vitro and might increase the chance of efficient ingrowth, survival, and functionality of tissue equivalents in vivo.
Collapse
Affiliation(s)
- Katharina Peters
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.P.); (R.S.); (A.H.)
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (N.W.); (D.H.); (P.W.K.); (B.A.-N.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Diana Heimes
- Department of Oral and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (N.W.); (D.H.); (P.W.K.); (B.A.-N.)
| | - Roxana Schwab
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.P.); (R.S.); (A.H.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (N.W.); (D.H.); (P.W.K.); (B.A.-N.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial and Plastic Surgery, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (N.W.); (D.H.); (P.W.K.); (B.A.-N.)
| | - Ronald E. Unger
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.P.); (R.S.); (A.H.)
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.P.); (R.S.); (A.H.)
- Correspondence: ; Tel.: +49-6131-17-2740
| |
Collapse
|
4
|
Direct oral mucosal epithelial transplantation supplies stem cells and promotes corneal wound healing to treat refractory persistent corneal epithelial defects. Exp Eye Res 2022; 215:108934. [PMID: 35007520 DOI: 10.1016/j.exer.2022.108934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Persistent corneal epithelial defects (PED) can lead to irreversible blindness, seriously affecting the social function and life quality of these patients. When it comes to refractory PED, such as limbal stem cell deficiency (LSCD), that does not respond to standard managements, stem cell therapy is an ideal method. Oral mucosal epithelium (OME) abundant with stem cells within the base, is a promising autologous biomaterial, with much resemblance to corneal epithelial structures. In this experiment, uncultured autologous rat OME was directly applied to alkali burned corneas. Clinical evaluations and histological analyses showed that the transplantation accelerated the healing process, presenting faster re-epithelization and better formation of corneal epithelial barrier. To further investigate the therapeutic mechanism, oral epithelium was transplanted to de-epithelialized cornea in vitro for organ culture. It could be observed that the oral epithelial cells could migrate to the corneal surface and form smooth and stratified epithelium. Immunofluorescence staining results showed that the re-formed epithelium derived from OME, maintained stemness and transformed to corneal epithelial phenotype to some extent. Corneal stroma may provide the suitable microenvironment to promote the trans-differentiation of oral stem cells. Thus, both in vivo and in vitro experiments suggested that oral epithelium could play a positive role in treating refractory PED.
Collapse
|
5
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|