1
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501148. [PMID: 40298902 DOI: 10.1002/advs.202501148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced four-dimensional (4D)- materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lauren G Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alex J Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Asha R Viswanathan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jamison M Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
| | - Serena H Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Thomas P Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ella E Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruby M Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Natalie A Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Jodie C Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ross C Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Cole A DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Tracy E Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multiregional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
3
|
Casademont-Roca A, Xing Z, Bernardi M, Rookmaker M, de Kort L, de Graaf P. A novel vascularized urethra-on-a-chip model. Sci Rep 2025; 15:8062. [PMID: 40055501 DOI: 10.1038/s41598-025-92485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/27/2025] [Indexed: 03/12/2025] Open
Abstract
The male urethra transports urine and semen. Any disease of the male urethra, hindering normal voiding or ejaculation, has a major impact on quality of life. Urethral stricture disease is common and molecular research into urethral strictures is hampered by the lack of reliable models of the human urethra. The aim of this project is to develop an in vitro model system of the human urethra. We hypothesized that by using the organ-on-a-chip technology we would be able to recapitulate physiology, functionality and the biomechanical cues of the native urethra and its surrounding vascular bed. Our approach consisted in using the F300R microfluidic device in combination with a rocking system to develop a potential urethra-on-a-chip. Urethral epithelial cells were used to mimic the native urethral epithelium. Gelatin-based hydrogels were tested for vasculogenic properties by placing the gel on the chick chorioallantoic membrane (CAM). Furthermore, the same gels were used for the formation of a micro vascular bed. Microvessel-like structures were formed in the gelatin-based hydrogels. Furthermore, these gels supported penetration, survival and proliferation of chicken endothelial cells when placed on the CAM. While we could only recapitulate a low fluidic shear stress (FSS) of 0.049 dyne/cm2, this was enough to form a confluent monolayer during dynamic conditions. This was not accomplished during static conditions. This project holds promise in mimicking the native layers of the urethra: epithelium and surrounding vascular tissue, under dynamic conditions. This new approach could provide a valuable platform to study the pathogenesis of urethral diseases and verify the effectiveness of drug treatment.
Collapse
Affiliation(s)
- Aina Casademont-Roca
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhentao Xing
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Murillo Bernardi
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten Rookmaker
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laetitia de Kort
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
5
|
Lammers RJM, Tsachouridis G, Andersson MK, Dormeus S, Ekerhult TO, Frankiewicz M, Gunn CJ, Matuszewski M, de Mooij KL, Schroeder RPJ, Wyndaele MIA, Xing Z, De Kort LMO, de Graaf P. What should be next in lifelong posterior hypospadias: Conclusions from the 2023 ERN eUROGEN and EJP-RD networking meeting. Neurourol Urodyn 2024; 43:1097-1103. [PMID: 38289328 DOI: 10.1002/nau.25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND A congenital disease is for life. Posterior hypospadias, the severe form of hypospadias with a penoscrotal, scrotal, or perineal meatus, is a challenging condition with a major impact on lifelong quality of life. AIM Our network meeting is aimed to identify what is currently missing in the lifelong treatment of posterior hypospadias, to improve care, quality of life, and awareness for these patients. METHODS The network meeting "Lifelong Posterior Hypospadias" in Utrecht, The Netherlands was granted by the European Joint Programme on Rare Diseases-Networking Support Scheme. There was a combination of interactive sessions (hackathons) and lectures. This paper can be regarded as the last phase of the hackathon. RESULTS Surgery for hypospadias remains challenging and complications may occur until adulthood. Posterior hypospadias affects sexual function, fertility, and hormonal status. Transitional care from childhood into adulthood is currently insufficiently established. Patients should be more involved in defining desired treatment approach and outcome measures. For optimal outcome evaluation standardization of data collection and registration at European level is necessary. Tissue engineering may provide a solution to the shortage of healthy tissue in posterior hypospadias. For optimal results, cooperation between basic researchers from different centers, as well as involving clinicians and patients is necessary. CONCLUSIONS To improve outcomes for patients with posterior hypospadias, patient voices should be included and lifelong care by dedicated healthcare professionals guaranteed. Other requirements are joining forces at European level in uniform registration of outcome data and cooperation in basic research.
Collapse
Affiliation(s)
- Rianne J M Lammers
- Department of Urology, University Medical Center Groningen, Groningen, The Netherlands
| | - George Tsachouridis
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Urology, Wilhemina Kinderziekenhuis, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Marie K Andersson
- Department of Pediatric Surgery, Sahlgrenska Academy, Women's and Children's Health, Queen Silvia's Children's Hospital, Gothenburg, Sweden
| | - Sarah Dormeus
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teresa O Ekerhult
- Department of Urology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Callum J Gunn
- Department of Bioethics and Health Humanities, Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Keetje L de Mooij
- Department of Pediatric Urology, Wilhemina Kinderziekenhuis, Utrecht, The Netherlands
| | - Rogier P J Schroeder
- Department of Pediatric Urology, Wilhemina Kinderziekenhuis, Utrecht, The Netherlands
| | - Michel I A Wyndaele
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhentao Xing
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Laetitia M O De Kort
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Buchmann S, Enrico A, Holzreuter MA, Reid M, Zeglio E, Niklaus F, Stemme G, Herland A. Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling. Mater Today Bio 2023; 21:100706. [PMID: 37435551 PMCID: PMC10331311 DOI: 10.1016/j.mtbio.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type is necessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometric precision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalized microfluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial characterization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structures printed with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-step strategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms networks on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-culture seeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentalization of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complex tissue, such as the human brain.
Collapse
Affiliation(s)
- Sebastian Buchmann
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alessandro Enrico
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
- Synthetic Physiology lab, Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Muriel Alexandra Holzreuter
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Michael Reid
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Erica Zeglio
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
7
|
Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, Karalkin PA, Nezhurina EK, Gryadunova AA, Bulanova EA, Sapozhnikov OA, Tsysar SA, Liu K, Oosterwijk E, van Beuningen H, van der Kraan P, Granneman S, Engelkamp H, Christianen P, Kasyanov V, Khesuani YD, Mironov VA. Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Adv Healthc Mater 2020; 9:e2000721. [PMID: 32809273 DOI: 10.1002/adhm.202000721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Indexed: 12/15/2022]
Abstract
In traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium. In the current study, the tissue spheroids from human bladder smooth muscle cells (myospheres) are used as building blocks for assembling the tubular 3D constructs. Levitational assembly is accomplished at low concentrations of gadolinium salts in the high magnetic field at 9.5 T. The biofabricated smooth muscle constructs demonstrate contraction after the addition of vasoconstrictive agent endothelin-1. Thus, hybrid magnetoacoustic levitational bioassembly is considered as a new technology platform in the emerging field of formative biofabrication. This novel technology of scaffold-free, nozzle-free, and label-free bioassembly opens a unique opportunity for rapid biofabrication of 3D tissue and organ constructs with complex geometry.
Collapse
Affiliation(s)
- Vladislav A. Parfenov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- A. A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences Moscow 119334 Russia
| | - Elizaveta V. Koudan
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Alisa A. Krokhmal
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A. Annenkova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Stanislav V. Petrov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | | | - Pavel A. Karalkin
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| | - Elizaveta K. Nezhurina
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
| | - Anna A. Gryadunova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Elena A. Bulanova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Oleg A. Sapozhnikov
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Sergey A. Tsysar
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Kaizheng Liu
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Egbert Oosterwijk
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Henk van Beuningen
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Peter van der Kraan
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Sanne Granneman
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Hans Engelkamp
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Peter Christianen
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Vladimir Kasyanov
- Riga Stradins University Riga LV‐1007 Latvia
- Riga Technical University Riga LV‐1658 Latvia
| | - Yusef D. Khesuani
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Vladimir A. Mironov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| |
Collapse
|