1
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jaumouillé V, Liu H, Swaminathan V, Nain AS, Oldenbourg R, La Riviere PJ, Shroff H. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc Natl Acad Sci U S A 2025; 122:e2406679122. [PMID: 39982748 PMCID: PMC11874040 DOI: 10.1073/pnas.2406679122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Tobias I. Baskin
- Department of Biology, University of Massachusetts, Amherst, MA01003
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Valentin Jaumouillé
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, ScaniaSE-221 00, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, ScaniaSE-221 00, Sweden
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | | | - Patrick J. La Riviere
- Department of Radiology, University of Chicago, Chicago, IL60637
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
2
|
Liu X, Deng Y, Liang Z, Qiao D, Zhang W, Wang M, Li F, Liu J, Wu Y, Chen G, Liu Y, Tan W, Xing J, Huang W, Zhao D, Li Y. The alteration of the structure and macroscopic mechanical response of porcine patellar tendon by elastase digestion. Front Bioeng Biotechnol 2024; 12:1374352. [PMID: 38694621 PMCID: PMC11061363 DOI: 10.3389/fbioe.2024.1374352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.
Collapse
Affiliation(s)
- Xiaoyun Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zeyu Liang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentian Zhang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopaedics, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Feifei Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiannan Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobing Wu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Liu
- Department of Anatomy, Gannan Healthcare Vocational College, Ganzhou, China
| | - Wenchang Tan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Mechanical characterisation of the human dura mater, falx cerebri and superior sagittal sinus. Acta Biomater 2021; 134:388-400. [PMID: 34314888 DOI: 10.1016/j.actbio.2021.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
The cranial meninges have been shown to play a pivotal role in traumatic brain injury mechanopathology. However, while the mechanical response of the brain and its many subregions have been studied extensively, the meninges have conventionally been overlooked. This paper presents the first comparative mechanical analysis of human dura mater, falx cerebri and superior sagittal sinus tissues. Biaxial tensile analysis identified that these tissues are mechanically heterogeneous, in contrast to the assumption that the tissues are mechanically homogeneous which is typically employed in FE model design. A thickness of 0.91 ± 0.05 (standard error) mm for the falx cerebri was also identified. This data can aid in improving the biofidelity of the influential falx structure in FE models. Additionally, the use of a collagen hybridizing peptide on the superior sagittal sinus suggests this structure is particularly susceptible to the effects of circumferential stretch, which may have important implications for clinical treatment of dural venous sinus pathologies. Collectively, this research progresses understanding of meningeal mechanical and structural characteristics and may aid in elucidating the behaviour of these tissues in healthy and diseased conditions. STATEMENT OF SIGNIFICANCE: This study presents the first evaluation of human falx cerebri and superior sagittal sinus mechanical, geometrical and structural properties, along with a comparison to cranial dura mater. To mechanically characterise the tissues, biaxial tensile testing is conducted on the tissues. This analysis identifies, for the first time, mechanical stiffness differences between these tissues. Additionally, geometrical analysis identifies that there are thickness differences between the tissues. The evaluation of human meningeal tissues allows for direct implementation of the novel data to finite element head injury models to enable improved biofidelity of these influential structures in traumatic brain injury simulations. This work also identifies that the superior sagittal sinus may be easily damaged during clinical angioplasty procedures, which may inform the treatment of dural sinus pathologies.
Collapse
|
4
|
Walsh DR, Zhou Z, Li X, Kearns J, Newport DT, Mulvihill JJE. Mechanical Properties of the Cranial Meninges: A Systematic Review. J Neurotrauma 2021; 38:1748-1761. [PMID: 33191848 DOI: 10.1089/neu.2020.7288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues. Publications were identified from a search of Scopus, Academic Search Complete, and Web of Science and screened for eligibility according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review details the wide range of testing techniques employed to date and the significant variability in the observed experimental findings. Our findings identify many gaps in the current literature that can serve as a guide for future work for meningeal mechanics investigators. The review identifies no peer-reviewed mechanical data on the falx and tentorium tissues, both of which have been identified as key structures in influencing brain injury mechanics. A dearth of mechanical data for the pia-arachnoid complex also was identified (no experimental mechanics studies on the human pia-arachnoid complex were identified), which is desirable for biofidelic modeling of human head injuries. Finally, this review provides recommendations on how experiments can be conducted to allow for standardization of test methodologies, enabling simplified comparisons and conclusions on meningeal mechanics.
Collapse
Affiliation(s)
- Darragh R Walsh
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Jamie Kearns
- Munster Rugby High Performance Center, University of Limerick, Limerick, Ireland
| | - David T Newport
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|