1
|
Schneekloth S, Beske RP, Møller JE, Obling LER, Kjaergaard J, Meyer MAS, Grand J, Schmidt H, Højgaard HF, Hassager C. Oxygen Delivery and Consumption in Patients Who Are Comatose After Out-of-Hospital Cardiac Arrest Are Affected by Blood Pressure Target. J Am Heart Assoc 2024; 13:e037354. [PMID: 39435704 PMCID: PMC11935676 DOI: 10.1161/jaha.124.037354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND In the management of patients resuscitated from out-of-hospital cardiac arrest, a primary goal is to restore sufficient oxygen delivery (DO2) to meet demands in oxygen consumption (VO2). METHODS AND RESULTS This post hoc analysis of the BOX (Blood Pressure and Oxygen Targets) study included adult patients who were comatose and experienced out-of-hospital cardiac arrest from a presumed cardiac cause, who were randomized to a mean arterial blood pressure (MAP) target of 63 mm Hg (MAP63) or 77 mm Hg (MAP77) and a Restrictive PaO2 target of 9 to 10 kPa versus a Liberal target of 13 to 14 kPa in a 2×2 factorial design. A pulmonary artery catheter was inserted following randomization. DO2 and VO2 were calculated as: DO2=cardiac output × arterial oxygen content, and VO2= cardiac output × arteriovenous oxygen difference. Of 789 patients, 730 (92.5%) were included in this substudy. A total of 362 patients were randomized to MAP77, and 368 to MAP63, 368 to a liberal Pao2 target, and 362 to a restrictive target. At all prespecified time points, DO2 in MAP77 was higher compared with MAP63, with a cumulative treatment effect of 203 L (95% CI, 132-274) O2 after 36 hours. VO2 was higher in MAP77 after 36 hours, with a cumulative treatment effect of 21.9 L (95% CI, 5.8-38) O2, compared with the MAP63 group. CONCLUSIONS Targeting a MAP of 77 mm Hg resulted in an overall increase in DO2 and a smaller increase in VO2 compared with a MAP target of 63 mm Hg. A higher Pao2 target did not result in any difference in DO2 or VO2.
Collapse
Affiliation(s)
- Simon Schneekloth
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Rasmus Paulin Beske
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Jacob Eifer Møller
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Laust E. R. Obling
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Jesper Kjaergaard
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Martin A. S. Meyer
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Johannes Grand
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
| | - Henrik Schmidt
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Cardiothoracic Intensive Care UnitOdense University HospitalOdenseDenmark
| | | | - Christian Hassager
- Department of Cardiology, The Heart CentreCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Shea MG, Balaji L, Grossestreuer AV, Issa MS, Silverman J, Li F, Donnino MW, Berg KM. Oxygen metabolism after cardiac arrest: Patterns and associations with survival. Resusc Plus 2024; 19:100667. [PMID: 38827271 PMCID: PMC11143887 DOI: 10.1016/j.resplu.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Aim Whether changes in oxygen metabolism, as measured by oxygen consumption (VO2), carbon dioxide production (VCO2) and the respiratory exchange ratio (RER), are associated with survival after cardiac arrest is poorly understood. In this prospective observational study, we investigated the association between VO2, VCO2, and RER in the initial 12 and 24 h after return of spontaneous circulation (ROSC) and survival to hospital discharge. Methods Adults with ROSC after cardiac arrest, admitted to the intensive care unit, requiring mechanical ventilation and treated with targeted temperature management were included. VO2 and VCO2 were measured continuously for 24 h after ROSC, using a noninvasive anesthesia monitor. Area under the curve for VO2, VCO2 & RER was calculated using all available values over 12 and 24 h after ROSC. Using logistic regression, we evaluated the relationship between these metabolic variables and survival to hospital discharge. Analyses were adjusted for temperature, vasopressors, and neuromuscular blockade. Results Sixty four patients were included. Mean age was 64 ± 16 years, and 59% were women. There was no significant association between the area under the curve of VO2 or VCO2 and survival. A higher RER in the initial 12 h was associated with better survival (aOR = 3.97, 95% CI [1.01,15.6], p = 0.048). Survival was lower in those with median RER < 0.7 in the initial 12 h compared with those with a median RER ≥ 0.7 (25% vs 67%, p = 0.011). Conclusion Higher RER in the initial 12 h was associated with survival after cardiac arrest. The etiology of unusually low RERs in this patient population remains unclear.
Collapse
Affiliation(s)
- Meredith G. Shea
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Lakshman Balaji
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Anne V. Grossestreuer
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Mahmoud S. Issa
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Jeremy Silverman
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Franklin Li
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Michael W. Donnino
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| | - Katherine M. Berg
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Rosenberg 2, Boston, MA 02215, USA
| |
Collapse
|
3
|
Miao B, Skaar JR, O'Hara M, Post A, Kelly T, Abella BS. A Systematic Literature Review to Assess Fever Management and the Quality of Targeted Temperature Management in Critically Ill Patients. Ther Hypothermia Temp Manag 2024; 14:68-79. [PMID: 37219898 DOI: 10.1089/ther.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Targeted temperature management (TTM) has been proposed to reduce mortality and improve neurological outcomes in postcardiac arrest and other critically ill patients. TTM implementation may vary considerably among hospitals, and "high-quality TTM" definitions are inconsistent. This systematic literature review in relevant critical care conditions evaluated the approaches to and definitions of TTM quality with respect to fever prevention and the maintenance of precise temperature control. Current evidence on the quality of fever management associated with TTM in cardiac arrest, traumatic brain injury, stroke, sepsis, and critical care more generally was examined. Searches were conducted in Embase and PubMed (2016 to 2021) following PRISMA guidelines. In total, 37 studies were identified and included, with 35 focusing on postarrest care. Frequently-reported TTM quality outcomes included the number of patients with rebound hyperthermia, deviation from target temperature, post-TTM body temperatures, and number of patients achieving target temperature. Surface and intravascular cooling were used in 13 studies, while one study used surface and extracorporeal cooling and one study used surface cooling and antipyretics. Surface and intravascular methods had comparable rates of achieving target temperature and maintaining temperature. A single study showed that patients with surface cooling had a lower incidence of rebound hyperthermia. This systematic literature review largely identified cardiac arrest literature demonstrating fever prevention with multiple TTM approaches. There was substantial heterogeneity in the definitions and delivery of quality TTM. Further research is required to define quality TTM across multiple elements, including achieving target temperature, maintaining target temperature, and preventing rebound hyperthermia.
Collapse
Affiliation(s)
| | | | | | - Andrew Post
- Trinity Life Sciences, Waltham, Massachusetts, USA
| | - Tim Kelly
- Becton Dickinson, Franklin Lakes, New Jersey, USA
| | - Benjamin S Abella
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Grand J, Hassager C, Schmidt H, Mølstrøm S, Nyholm B, Obling LER, Meyer MAS, Illum E, Josiassen J, Beske RP, Høigaard Frederiksen H, Dahl JS, Møller JE, Kjaergaard J. Impact of Blood Pressure Targets in Patients With Heart Failure Undergoing Postresuscitation Care: A Subgroup Analysis From a Randomized Controlled Trial. Circ Heart Fail 2024; 17:e011437. [PMID: 38847097 DOI: 10.1161/circheartfailure.123.011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND To assess the effect of targeting higher or lower blood pressure during postresucitation intensive care among comatose patients with out-of-hospital cardiac arrest with a history of heart failure. METHODS The BOX trial (Blood Pressure and Oxygenation Targets After Out-of-Hospital Cardiac Arrest) was a randomized, controlled, double-blinded, multicenter study comparing titration of vasopressors toward a mean arterial pressure (MAP) of 63 versus 77 mm Hg during postresuscitation intensive care. Patients with a history of heart failure were included in this substudy. Pulmonary artery catheters were inserted shortly after admission. History of heart failure was assessed through chart review of all included patients. The primary outcome was cardiac index during the first 72 hours. Secondary outcomes were left ventricular ejection fraction, heart rate, stroke volume, renal replacement therapy and all-cause mortality at 365 days. RESULTS A total of 134 patients (17% of the BOX cohort) had a history of heart failure (patients with left ventricular ejection fraction, ≤40%: 103 [77%]) of which 71 (53%) were allocated to a MAP of 77 mm Hg. Cardiac index at intensive care unit arrival was 1.77±0.11 L/min·m-2 in the MAP63-group and 1.78±0.17 L/min·m-2 in the MAP77, P=0.92. During the next 72 hours, the mean difference was 0.15 (95% CI, -0.04 to 0.35) L/min·m-2; Pgroup=0.22. Left ventricular ejection fraction and stroke volume was similar between the groups. Patients allocated to MAP77 had significantly elevated heart rate (mean difference 6 [1-12] beats/min, Pgroup=0.03). Vasopressor usage was also significantly increased (P=0.006). At 365 days, 69 (51%) of the patients had died. The adjusted hazard ratio for 365 day mortality was 1.38 (0.84-2.27), P=0.20 and adjusted odds ratio for renal replacement therapy was 2.73 (0.84-8.89; P=0.09). CONCLUSIONS In resuscitated patients with out-of-hospital cardiac arrest with a history of heart failure, allocation to a higher blood pressure target resulted in significantly increased heart rate in the higher blood pressure-target group. However, no certain differences was found for cardiac index, left ventricular ejection fraction or stroke volume. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03141099.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
- Department of Cardiology, Copenhagen University Hospital Amager-Hvidovre, Denmark (J.G.)
| | - Christian Hassager
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
- Department of Clinical Medicine, University of Copenhagen, Denmark (C.H., J.K.)
| | - Henrik Schmidt
- Department of Anaesthesiology and Intensive Care (H.S., S.M., H.H.F.), Odense University Hospital, Denmark
| | - Simon Mølstrøm
- Department of Anaesthesiology and Intensive Care (H.S., S.M., H.H.F.), Odense University Hospital, Denmark
| | - Benjamin Nyholm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
| | - Laust E R Obling
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
| | - Martin A S Meyer
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
| | - Emma Illum
- Department of Cardiology (E.I., J.S.D., J.E.M.), Odense University Hospital, Denmark
- Clinical Institute University of Southern Denmark, Odense, Denmark (E.I., J.S.D., J.E.M.)
| | - Jakob Josiassen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
| | - Rasmus P Beske
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
| | | | - Jordi S Dahl
- Department of Cardiology (E.I., J.S.D., J.E.M.), Odense University Hospital, Denmark
- Clinical Institute University of Southern Denmark, Odense, Denmark (E.I., J.S.D., J.E.M.)
| | - Jacob E Møller
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
- Department of Cardiology (E.I., J.S.D., J.E.M.), Odense University Hospital, Denmark
- Clinical Institute University of Southern Denmark, Odense, Denmark (E.I., J.S.D., J.E.M.)
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark (J.G., C.H., B.N., L.E.R.O., M.A.S.M., J.J., R.P.B., J.E.M., J.K.)
- Department of Clinical Medicine, University of Copenhagen, Denmark (C.H., J.K.)
| |
Collapse
|
5
|
Beske RP, Obling LER, Bro-Jeppesen J, Nielsen N, Meyer MAS, Kjaergaard J, Johansson PI, Hassager C. The Effect of Targeted Temperature Management on the Metabolome Following Out-of-Hospital Cardiac Arrest. Ther Hypothermia Temp Manag 2023; 13:208-215. [PMID: 37219970 DOI: 10.1089/ther.2022.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Targeted temperature management (TTM) may moderate the injury from out-of-hospital cardiac arrest. Slowing the metabolism has been a suggested effect. Nevertheless, studies have found higher lactate levels in patients cooled to 33°C compared with 36°C even days from TTM cessation. Larger studies have not been performed on the TTM's effect on the metabolome. Accordingly, to explore the effect of TTM, we used ultra-performance liquid-mass spectrometry in a substudy of 146 patients randomized in the TTM trial to either 33°C or 36°C for 24 hours and quantified 60 circulating metabolites at the time of hospital arrival (T0) and 48 hours later (T48). From T0 to T48, profound changes to the metabolome were observed: tricarboxylic acid (TCA) cycle metabolites, amino acids, uric acid, and carnitine species all decreased. TTM significantly modified these changes in nine metabolites (Benjamini-Hochberg corrected false discovery rate <0.05): branched amino acids valine and leucine levels dropped more in the 33°C arm (change [95% confidence interval]: -60.9 μM [-70.8 to -50.9] vs. -36.0 μM [-45.8 to -26.3] and -35.5 μM [-43.1 to -27.8] vs. -21.2 μM [-28.7 to -13.6], respectively), whereas the TCA metabolites including malic acid and 2-oxoglutaric acid remained higher for the first 48 hours (-7.7 μM [-9.7 to -5.7] vs. -10.4 μM [-12.4 to -8.4] and -3 μM [-4.3 to -1.7] vs. -3.7 μM [-5 to -2.3]). Prostaglandin E2 only dropped in the TTM 36°C group. The results show that TTM affects the metabolism hours after normothermia have been reached. Clinical Trial Number: NCT01020916.
Collapse
Affiliation(s)
- Rasmus Paulin Beske
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niklas Nielsen
- Department of Clinical Sciences at Helsingborg, Lund University, Lund, Sweden
| | | | - Jesper Kjaergaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Pär Ingemar Johansson
- Department of Clinical Immunology, Center for Endotheliomics, CAG, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Grand J, Hassager C, Schmidt H, Mølstrøm S, Nyholm B, Høigaard HF, Dahl JS, Meyer M, Beske RP, Obling L, Kjaergaard J, Møller JE. Serial assessments of cardiac output and mixed venous oxygen saturation in comatose patients after out-of-hospital cardiac arrest. Crit Care 2023; 27:410. [PMID: 37891623 PMCID: PMC10612339 DOI: 10.1186/s13054-023-04704-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIM To assess the association with outcomes of cardiac index (CI) and mixed venous oxygen saturation (SvO2) in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). METHODS In the cohort study of 789 patients included in the "BOX"-trial, 565 (77%) patients were included in this hemodynamic substudy (age 62 ± 13 years, male sex 81%). Pulmonary artery catheters were inserted shortly after ICU admission. CI and SvO2 were measured as soon as possible in the ICU and until awakening or death. The endpoints were all-cause mortality at 1 year and renal failure defined as need for renal replacement therapy. RESULTS First measured CI was median 1.7 (1.4-2.1) l/min/m2, and first measured SvO2 was median 67 (61-73) %. CI < median with SvO2 > median was present in 222 (39%), and low SvO2 with CI < median was present in 59 (11%). Spline analysis indicated that SvO2 value < 55% was associated with poor outcome. Low CI at admission was not significantly associated with mortality in multivariable analysis (p = 0.14). SvO2 was significantly inversely associated with mortality (hazard ratioadjusted: 0.91 (0.84-0.98) per 5% increase in SvO2, p = 0.01). SvO2 was significantly inversely associated with renal failure after adjusting for confounders (ORadjusted: 0.73 [0.62-0.86] per 5% increase in SvO2, p = 0.001). The combination of lower CI and lower SvO2 was associated with higher risk of mortality (hazard ratioadjusted: 1.54 (1.06-2.23) and renal failure (ORadjusted: 5.87 [2.34-14.73]. CONCLUSION First measured SvO2 after resuscitation from OHCA was inversely associated with mortality and renal failure. If SvO2 and CI were below median, the risk of poor outcomes increased significantly. REGISTRATION The BOX-trial is registered at clinicaltrials.gov (NCT03141099, date 2017-30-04, retrospectively registered).
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Cardiology, Copenhagen University Hospital Amager-Hvidovre, Copenhagen, Denmark.
| | - Christian Hassager
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Schmidt
- Department of Anesthesiology and Intensive Care, Odense University Hospital, 5000, Odense, Denmark
| | - Simon Mølstrøm
- Department of Anesthesiology and Intensive Care, Odense University Hospital, 5000, Odense, Denmark
| | - Benjamin Nyholm
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | - Jordi S Dahl
- Department of Cardiology, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute University of Southern Denmark, Odense, Denmark
| | - Martin Meyer
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Rasmus P Beske
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Laust Obling
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Møller
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Cardiology, Odense University Hospital, 5000, Odense, Denmark
- Clinical Institute University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Xu S, Miao H, Gong L, Feng L, Hou X, Zhou M, Shen H, Chen W. Effects of Different Hypothermia on the Results of Cardiopulmonary Resuscitation in a Cardiac Arrest Rat Model. DISEASE MARKERS 2022; 2022:2005616. [PMID: 35419118 PMCID: PMC9001110 DOI: 10.1155/2022/2005616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the optimal temperature of hypothermia treatment in rats with cardiac arrest caused by ventricular fibrillation (VF) after the return of spontaneous circulation (ROSC). Methods A total of forty-eight male Sprague-Dawley rats were induced by VF through the guidewire with a maximum of 5 mA current and untreated for 8 min. Cardiopulmonary resuscitation (CPR) was performed for 8 min followed by defibrillation (DF). Resuscitated rats were then randomized into the normothermia (37°C) group, milder (35°C) group, mild (33°C) group, or moderate (28°C) group. Hypothermia was immediately induced with surface cooling. The target temperature was maintained for 4 h before rewarming to 37 ± 0.5°C. Moreover, at the end of the 4 h, a rat in each group was randomly selected to be sacrificed for the cerebral cortex electron microscopy observation (n = 1). The other resuscitated animals were observed for up to 72 h after ROSC (n = 7). Left ventricular ejection fraction (LVEF) and left ventricular end diastolic volume (LVEDV) were measured. Survival time, survival rate, and neurological deficit score (NDS) were recorded for 72 h. Results During hypothermia, higher LVEF was observed in the hypothermia groups when compared with normothermia group (35°C vs. 37°C, p < 0.05, 33°C and 28°C vs. 37°C, p < 0.01). Among the hypothermia groups, LVEF was higher in the 28°C group than that of 35°C (p < 0.05). However, both the heart rate (HR) (p < 0.01) and LVEDV (28°C vs. 35°C, p < 0.01, 28°C vs. 37°C and 33°C, p < 0.05) were lowest in the 28°C group when compared with the other groups. There were no significant differences of LVEF and LVEDV between the group 35°C and 33°C (p > 0.05). After rewarming, the LVEF of 35°C group was higher than that of group 37°C, 33°C, and 28°C (35°C vs. 37°C and 28°C, p < 0.01, 35°C vs. 33°C, p < 0.05). Group 35°C and 33°C resulted in longer survival (p < 0.01), higher survival rate (p < 0.01), and lower NDS (35°C vs. 37°C and 28°C, p < 0.01, 33°C vs. 37°C and 28°C, p < 0.05) compared with the group 37°C and 28°C. The extent of damage to cerebral cortex cells in group of 35°C and 33°C was lighter than that in group of 37°C and 28°C. The 35°C group spent less time in the process of cooling and rewarming than the group 33°C and 28°C (p < 0.01). Conclusions An almost equal protective effect of milder hypothermia (35°C) and mild hypothermia (33°C) in cardiac arrest (CA) rats was achieved with more predominant effect than moderate hypothermia (28°C) and normothermia (37°C). More importantly, shorter time spent in cooling and rewarming was required in the 35°C group, indicating its potential clinical application. These findings support the possible use of milder hypothermia (35°C) as a therapeutic agent for postresuscitation.
Collapse
Affiliation(s)
- Shaohua Xu
- Nankai University School of Medicine, Tianjin, China
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Miao
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liming Gong
- Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Lijie Feng
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuliang Hou
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manhong Zhou
- Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hong Shen
- Nankai University School of Medicine, Tianjin, China
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Chen
- The 1st Medical Center of Chinese PLA General Hospital, Beijing, China
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
- Hainan Hospital of Chinese PLA General Hospital, Hainan, China
| |
Collapse
|
8
|
Grand J, Kjaergaard J, Hassager C, Møller JE, Bro-Jeppesen J. Comparing Doppler Echocardiography and Thermodilution for Cardiac Output Measurements in a Contemporary Cohort of Comatose Cardiac Arrest Patients Undergoing Targeted Temperature Management. Ther Hypothermia Temp Manag 2021; 12:159-167. [PMID: 34415801 DOI: 10.1089/ther.2021.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Measuring cardiac output is used to guide treatment during postresuscitation care. The aim of this study was to compare Doppler echocardiography (Doppler-CO) with thermodilution using pulmonary artery catheters (PAC-CO) for cardiac output estimation in a large cohort of comatose out-of-hospital cardiac arrest (OHCA) patients undergoing targeted temperature management (TTM). Single-center substudy of 141 patients included in the TTM trial randomly assigned to 33 or 36°C for 24 hours after OHCA. Per protocol, PAC-CO and Doppler-CO were measured simultaneously shortly after admission and again at 24 and 48 hours. Linear correlation was assessed between methods and positive predictive value (PPV) and negative predictive value (NPV) of Doppler to estimate low cardiac output (<3.5 L/min) was calculated. A total of 301 paired cardiac output measurements were available. Average cardiac output was 5.28 ± 1.94 L/min measured by thermodilution and 4.06 ± 1.49 L/min measured by Doppler with a mean bias of 1.22 L/min (limits of agreements -1.92 to 4.36 L/min). Correlation between methods was moderate (R2 = 0.36). Using PAC-CO as the gold standard, PPV of a low cardiac output measurement (<3.5 L/min) by Doppler was 33%. However, the NPV was 92%. Hypothermia at 33°C did not negatively affect the correlations of CO methods. In the lowest quartile of Doppler, 13% had elevated lactate (>2 mmol/L). In the lowest quartile of thermodilution, 36% had elevated lactate (>2 mmol/L). In ventilated OHCA patients, the two methods for estimating cardiac output correlated moderately and there was a consistent underestimation of Doppler-CO. Absolute cardiac output values from Doppler-CO should be interpreted with caution. However, Doppler can be used to exclude low cardiac output with high accuracy. TTM at 33°C did not negatively affect the correlation or bias of cardiac output measurements. ClinicalTrials.gov ID: NCT01020916.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology B, Section 2142, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|