1
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|