1
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 PMCID: PMC11970334 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Huang S, Ziros PG, Chartoumpekis DV, Psarias G, Duntas L, Zuo X, Li X, Ding Z, Sykiotis GP. Traditional Chinese Medicine for Hashimoto's Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants (Basel) 2024; 13:868. [PMID: 39061936 PMCID: PMC11274136 DOI: 10.3390/antiox13070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hashimoto's thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients' health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still incompletely understood, oxidative stress is believed to play an important role. Hypothyroidism related to later stages of HT can be treated with levothyroxine substitution therapy; various approaches such as selenium supplementation and iodine-restricted diets have been proposed as disease-modifying treatments for earlier stages, and even thyroidectomy has been suggested for refractory cases of painful HT. Nevertheless, many patients still report suboptimal HRQoL, highlighting an unmet medical need in this area. The concepts and approaches of traditional Chinese medicine (TCM) in treating HT are not broadly known in the West. Here, we provide an overview of TCM for HT, including combinations of TCM with selenium. We encompass evidence from clinical trials and other studies related to complex TCM prescriptions, single herbs used in TCM, and phytochemicals; wherever possible, we delineate the probable underlying molecular mechanisms. The findings show that the main active components of TCM for HT have commonly known or presumed antioxidant and anti-inflammatory activities, which may account for their potential utility in HT. Further exploring the practices of TCM for HT and combining them with evidence- and mechanism-based approaches according to Western standards may help to identify new strategies to alter the clinical course of the disease and/or to treat patients' symptoms better and improve their HRQoL.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China;
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Georgios Psarias
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Leonidas Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenideion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Xinhe Zuo
- Thyroid Disease Diagnosis and Treatment Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China;
| | - Xinyi Li
- Department of Traditional Chinese Medicine and Rehabilitation, Beijing Health Vocational College, Beijing 101101, China;
| | - Zhiguo Ding
- Department of Thyropathy, Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727100, China
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| |
Collapse
|
3
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
4
|
Oglio R, Rodriguez C, Salvarredi L, Rossich L, Perona M, Dagrosa A, Juvenal G, Thomasz L. Selenium bioavailability modulates the sensitivity of thyroid cells to iodide excess. Chem Biol Interact 2024; 387:110810. [PMID: 38013145 DOI: 10.1016/j.cbi.2023.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-β1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-β1 mRNA and TGF-β inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-β1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.
Collapse
Affiliation(s)
- Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Carla Rodriguez
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Leonardo Salvarredi
- FUESMEN, Mendoza, Argentina; Balseiro Institute, National University of Cuyo, Mendoza, Argentina
| | - Luciano Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Marina Perona
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Alejandra Dagrosa
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Khadir F, Rahimi Z, Ghanbarpour A, Vaisi-Raygani A. Nrf2 rs6721961 and Oxidative Stress in Preeclampsia: Association with the Risk of Preeclampsia and Early-Onset Preeclampsia. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:127-136. [PMID: 37091040 PMCID: PMC10116352 DOI: 10.22088/ijmcm.bums.11.2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 04/25/2023]
Abstract
Preeclampsia as a multifactor hypertensive disorder of pregnancy is associated with enhanced placental oxidative stress. The Keap1-Nrf2 pathway protects cells against oxidative stress. We examined the possible association between the Nrf2 variants in relation to oxidative stress parameters with the risk of preeclampsia. We studied 150 preeclampsia women and 150 women with a normal pregnancy to find the frequency of Nrf2 rs6721961 genotypes using the PCR-RFLP method. Also, an association between the Nrf2 genotypes with the levels of malondialdehyde (MDA) and total antioxidant capacity (TAC) was analyzed. Significantly lower TAC and higher MDA levels were found in preeclampsia patients compared to controls (P<0.0001). For the first time, we report an association between the Nrf2 rs6721961 polymorphism and preeclampsia risk. The present study indicated that the GT genotype and the T allele of the Nrf2 rs6721961 increased the risk of preeclampsia by 2.81 and 2.39 times, respectively. Also, the Nrf2 TT genotype was associated with a 3.9-fold increased risk of early-onset preeclampsia. We detected a positive association between the levels of body mass index, MDA, and the Nrf2 polymorphism with the risk of preeclampsia and a negative correlation between the level of TAC with the preeclampsia risk. Also, an association between the rs6721961 TT genotype with higher serum MDA levels was found. Our study suggests oxidative stress is involved in the pathogenesis of preeclampsia and the Nrf2 rs6721961 polymorphism through alteration in the levels of oxidative stress parameters might increase the risk of preeclampsia and early-onset preeclampsia.
Collapse
Affiliation(s)
- Fatemeh Khadir
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Azita Ghanbarpour
- Department of Obstetrics and Gynecology Clinical Research Development Unit of Rouhani Hospital, Babol, Iran.
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Jin B, Wang S, Fan Z. Pathogenesis Markers of Hashimoto's Disease-A Mini Review. FRONT BIOSCI-LANDMRK 2022; 27:297. [PMID: 36336870 DOI: 10.31083/j.fbl2710297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 01/07/2023]
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease involving the thyroid gland. HT often clinically manifest as hypothyroidism due to the destruction of thyroid cells mediated by humoral and cellular immunity. The pathogenesis of HT is a complex process in which environmental factors, hereditary inclination, trace elements immune factors, cytokines, and DNA and miRNA all play an important role. Herein, we summarize the precision factors involved in the pathogenesis of HT and offer an update over the past 5 years to provide a theoretical basis for further investigation of the relevant targets for HT treatment.
Collapse
Affiliation(s)
- Binghui Jin
- Department of General Surgery, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
- Department of Central Laboratory, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
| | - Shuang Wang
- Department of Endocrinology, Second Affiliated Hospital of Dalian Medical University, 116021, Dalian, Liaoning, China
| | - Zhe Fan
- Department of General Surgery, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
- Department of Central Laboratory, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
| |
Collapse
|
8
|
Chartoumpekis DV, Ziros PG, Habeos IG, Sykiotis GP. Emerging roles of Keap1/Nrf2 signaling in the thyroid gland and perspectives for bench-to-bedside translation. Free Radic Biol Med 2022; 190:276-283. [PMID: 35988853 DOI: 10.1016/j.freeradbiomed.2022.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
The signaling pathway centered on the transcription factor nuclear erythroid factor 2-like 2 (Nrf2) has emerged during the last 15 years as a target for the prevention and treatment of diseases broadly related with oxidative stress such as cancer, neurodegenerative and metabolic diseases. The roles of Nrf2 are expanding beyond general cytoprotection, and they encompass its crosstalk with other pathways as well as tissue-specific functions. The thyroid gland relies on reactive oxygen species for its main physiological function, the synthesis and secretion of thyroid hormones. A few years ago, Nrf2 was characterized as a central regulator of the antioxidant response in the thyroid, as well as of the transcription and processing of thyroglobulin, the major thyroidal protein that serves as the substrate for thyroid hormone synthesis. Herein, we summarize the current knowledge about the roles of Nrf2 in thyroid physiology, pathophysiology and disease. We focus specifically on the most recent publications in the field, and we discuss the implications for the preclinical and clinical use of Nrf2 modulators.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Ioannis G Habeos
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504, Patras, Greece
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Thyroid Disorders in Patients Treated with Dimethyl Fumarate for Multiple Sclerosis: A Retrospective Observational Study. Antioxidants (Basel) 2022; 11:antiox11051015. [PMID: 35624879 PMCID: PMC9138003 DOI: 10.3390/antiox11051015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Dimethyl fumarate (DMF), a drug used for the treatment of multiple sclerosis (MS) and psoriasis, has been shown to activate the Keap1/Nrf2 antioxidant response. Nrf2 exerts pleiotropic roles in the thyroid gland; among others, single nucleotide polymorphisms (SNPs) in the gene encoding Nrf2 modulate the risk of Hashimoto’s thyroiditis (HT), suggesting that pharmacological activation of Nrf2 might also be protective. However, a patient with acute exacerbation of HT after starting DMF for MS was recently reported, raising questions about the thyroidal safety of Nrf2 activators. Methods: In a retrospective observational study, we investigated the prevalence and incidence of thyroid disorders (TD) among 163 patients with MS treated with DMF. Results: Only 7/163 patients (4.3%) were diagnosed with functional TD; most (5/163, 3.0%) were diagnosed before DMF treatment. Functional TD were diagnosed under or after DMF in only 2 patients (1.2%). Under DMF, one patient developed transient mild hypothyroidism with negative thyroid autoantibodies. After DMF discontinuation, another patient developed hyperthyroidism due to Graves’ disease. No patient developed thyroid structural disease under or after DMF. Conclusions: The very low incidence of functional TD indicates an overall very good thyroid tolerance of DMF, arguing against screening for TD in MS patients considered for or treated with DMF, and supporting the further study of Nrf2 activators for the prevention and treatment of TD.
Collapse
|
10
|
Liu C, Wang Z, Wang W, Zheng L, Li M. Positive effects of selenium supplementation on selenoprotein S expression and cytokine status in a murine model of acute liver injury. J Trace Elem Med Biol 2022; 71:126927. [PMID: 35030482 DOI: 10.1016/j.jtemb.2022.126927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is a consensus that selenomethionine (SeMet) can protect liver from damage, but the immune mechanism of SeMet in acute liver injury (ALI) is still unclear. This study aims to investigate the protective effects of SeMet against ALI and to elucidate the possible immune mechanism. METHODS Firstly, the role of SeMet in CCl4-induced ALI mice was investigated through survival rate, serum ALT and AST, liver necrosis and apoptosis analysis. The expression and secretion of inflammatory cytokines and chemokines in the liver and serum of CCl4-induced ALI mice were analyzed by qRT-PCR and ELISA. Then the immune cell phenotypes were analyzed by flow cytometry and confocal imaging. In addition, MDSCs depletion, CXCL12/CXCR4 axis blocking and selenoprotein S (SELENOS) knockdown assays were used to reveal the immune mechanism of SeMet. RESULTS We found that SeMet prolonged survival rate, decreased the serum ALT and AST, alleviated liver necrosis and inhibited hepatocytes apoptosis. Prospective, SeMet decreased the expression of IL-6 and TNF-α, and increased the expression of IL-10. Interestingly, SeMet decreased the expression of MCP-1, while increased the expression of CXCL12. The immune analysis showed that SeMet decreased the activation of T cells through promoting MDSCs accumulation mediated by CXCL12/CXCR4 axis. Furthermore, SeMet increased SELENOS expression in vivo, and knockdown of SELENOS effectively abolished the protective effect of SeMet during ALI. CONCLUSION This study demonstrates that SeMet alleviates CCl4-induced ALI by promoting MDSCs accumulation through SELENOS mediated CXCL12/CXCR4 axis. Therefore, our study infers that selenium intake may be as a new therapeutic option for management of inflammation-mediated liver injury.
Collapse
Affiliation(s)
- Chunliang Liu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Biochemistry, Medical College of Soochow University, Suzhou, China.
| | - Zerong Wang
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Lei Zheng
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Ming Li
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Köhrle J. Selenium in Endocrinology-Selenoprotein-Related Diseases, Population Studies, and Epidemiological Evidence. Endocrinology 2021; 162:6056471. [PMID: 33382424 DOI: 10.1210/endocr/bqaa228] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Selenium (Se), apart from iodine, iron, and calcium, is one of the nutrient-derived key elements strongly affecting the endocrine system. However, no specific hormonal "feedback" regulation for Se status has yet been identified, in contrast to the fine-tuned hormone network regulating Ca2+ and phosphate balance or hepcidin-related iron status. Since its discovery as an essential trace element, the effects of Se excess or deficiency on the endocrine system or components of the hypothalamic-pituitary-periphery feedback circuits, the thyroid hormone axis, glucoregulatory and adrenal hormones, male and female gonads, the musculoskeletal apparatus, and skin have been identified. Analysis of the Se status in the blood or via validated biomarkers such as the hepatically derived selenoprotein P provides valuable diagnostic insight and a rational basis for decision making on required therapeutic or preventive supplementation of risk groups or patients. Endocrine-related epidemiological and interventional evidence linking Se status to beneficial or potentially adverse actions of selected selenoproteins mediating most of the (patho-) physiological effects are discussed in this mini-review. Autoimmune thyroid disease, diabetes and obesity, male fertility, as well as osteoporosis are examples for which observational or interventional studies have indicated Se effects. The currently prevailing concept relating Se and selenoproteins to "oxidative stress," reactive oxygen species, radical hypotheses, and related strategies of pharmacological approaches based on various selenium compounds will not be the focus. The crucial biological function of several selenoproteins in cellular redox-regulation and specific enzyme reactions in endocrine pathways will be addressed and put in clinical perspective.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Wang J, Xiao M, Wang J, Wang S, Zhang J, Guo Y, Tang Y, Gu J. NRF2-Related Epigenetic Modifications in Cardiac and Vascular Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:598005. [PMID: 34248833 PMCID: PMC8269153 DOI: 10.3389/fendo.2021.598005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent chronic disease that is accompanied with serious complications, especially cardiac and vascular complications. Thus, there is an urgent need to identify new strategies to treat diabetic cardiac and vascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) has been verified as a crucial target for the prevention and treatment of diabetic complications. The function of NRF2 in the treatment of diabetic complications has been widely reported, but the role of NRF2-related epigenetic modifications remains unclear. The purpose of this review is to summarize the recent advances in targeting NRF2-related epigenetic modifications in the treatment of cardiac and vascular complications associated with DM. We also discuss agonists that could potentially regulate NRF2-associated epigenetic mechanisms. This review provides a better understanding of strategies to target NRF2 to protect against DM-related cardiac and vascular complications.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Zhang
- Department of Cardiology, The First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
13
|
Chartoumpekis DV, Fu CY, Ziros PG, Sykiotis GP. Patent Review (2017-2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants (Basel) 2020; 9:antiox9111138. [PMID: 33212784 PMCID: PMC7697445 DOI: 10.3390/antiox9111138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Research on the antioxidant pathway comprising the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) is ever increasing. As modulators of this pathway have started to be used in clinical trials and clinical practice, Nrf2 has become the subject of several patents. To assess the patent landscape of the last three years on Nrf2 and evaluate the main fields they refer to, we used the web-based tool PatSeer Pro to identify patents mentioning the Nrf2 pathway between January 2017 and May 2020. This search resulted in 509 unique patents that focus on topics such as autoimmune, neurodegenerative, liver, kidney, and lung diseases and refer to modulators (mainly activators) of the Nrf2 pathway as potential treatments. Autoimmunity emerged as the main theme among the topics of Nrf2 patents, including a broad range of diseases, such as systemic sclerosis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, Hashimoto's thyroiditis, etc.; however, there was a dearth of experimental support for the respective patents' claims. Given that chronic inflammation is the main element of the pathophysiology of most autoimmune diseases, the majority of patents referring to activation of Nrf2 as a method to treat autoimmune diseases base their claims on the well-established anti-inflammatory role of Nrf2. In conclusion, there is strong interest in securing intellectual property rights relating to the potential use of Nrf2 pathway activators in a variety of diseases, and this trend parallels the rise in related research publications. However, in the case of autoimmunity, more research is warranted to support the potential beneficial effects of Nrf2 modulation in each disease.
Collapse
Affiliation(s)
- Dionysios V. Chartoumpekis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Division of Endocrinology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Chun-Yan Fu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Panos G. Ziros
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
| | - Gerasimos P. Sykiotis
- Service of Endocrinology and Diabetology, Lausanne University Hospital, and Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.V.C.); (P.G.Z.)
- Correspondence: ; Tel.: +41-21-314-0606
| |
Collapse
|
14
|
The Keap1/Nrf2 Signaling Pathway in the Thyroid-2020 Update. Antioxidants (Basel) 2020; 9:antiox9111082. [PMID: 33158045 PMCID: PMC7693470 DOI: 10.3390/antiox9111082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
The thyroid gland has a special relationship with oxidative stress. On the one hand, like all other tissues, it must defend itself against reactive oxygen species (ROS). On the other hand, unlike most other tissues, it must also produce reactive oxygen species in order to synthesize its hormones that contribute to the homeostasis of other tissues. The thyroid must therefore also rely on antioxidant defense systems to maintain its own homeostasis in the face of continuous self-exposure to ROS. One of the main endogenous antioxidant systems is the pathway centered on the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1). Over the last few years, multiple links have emerged between the Keap1/Nrf2 pathway and thyroid physiology, as well as various thyroid pathologies, including autoimmunity, goiter, hypothyroidism, hyperthyroidism, and cancer. In the present mini-review, we summarize recent studies shedding new light into the roles of Keap1/Nrf2 signaling in the thyroid.
Collapse
|
15
|
Zhuang C, Liu G, Barkema HW, Zhou M, Xu S, Ur Rahman S, Liu Y, Kastelic JP, Gao J, Han B. Selenomethionine Suppressed TLR4/NF-κB Pathway by Activating Selenoprotein S to Alleviate ESBL Escherichia coli-Induced Inflammation in Bovine Mammary Epithelial Cells and Macrophages. Front Microbiol 2020; 11:1461. [PMID: 32733409 PMCID: PMC7360804 DOI: 10.3389/fmicb.2020.01461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Inflammation is the hallmark of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli-induced bovine mastitis. Organic selenium can activate pivotal proteins in immune responses and regulate the immune system. The present study aimed to investigate whether selenomethionine (SeMet) attenuates ESBL E. coli-induced inflammation in bovine mammary epithelial cells (bMECs) and macrophages. Cells were treated with 0, 5/10, 10/20, 20/40, or 40/60 μM SeMet for 12 h and/or inoculated with ESBL-E. coli [multiplicity of infection (MOI) = 5] for 4/6 h, respectively. We assessed inflammatory responses, including selenoprotein S (SeS), Toll-like receptor 4 (TLR4), Ikappa-B (IκB), phospho-NF-κB p65 (Ser536), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) activities. Treatment with 40/60 μM SeMet promoted cell viability and inhibited LDH activities in both bMECs and macrophages. Inoculation with ESBL-E. coli reduced cell viability, which was attenuated by SeMet treatment in bMECs and macrophages. SeMet increased ESBL E. coli-induced downregulation of SeS and decreased LDH activities, TLR4, IκB, phospho-NF-κB p65 (Ser536), IL-1β, and TNF-α protein expressions in bMECs and macrophages. In addition, knockdown of SeS promoted protein expression of TLR4-mediated nuclear factor-kappa (NF-κB) pathway and BAY 11-708 inhibited TNF-α and IL-1β protein levels in bMECs and macrophages after ESBL-E. coli treatment. Moreover, ESBL-E. coli inoculation increased monocyte chemoattractant protein 1 (MCP-1), C-C motif ligand 3 (CCL-3), and CCL-5 mRNA expressions in bMECs. In conclusion, ESBL-E. coli induced expression of MCP-1, CCL-3, and CCL-5 in bMECs and then recruited and activated macrophages, whereas SeMet attenuated ESBL E. coli-induced inflammation through activated SeS-mediated TLR4/NF-κB signaling pathway in bMECs and macrophages.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|