1
|
Carmona-Peña S, Contreras-Garduño J, Castro D, Manjarrez J, Vázquez-Chagoyán J. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Trop 2021; 224:106108. [PMID: 34450058 DOI: 10.1016/j.actatropica.2021.106108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The present work aimed to review the immune response from different triatomines against Trypanosoma cruzi and Trypanosoma rangeli and propose the study of immune memory in such insects. Trypanosoma use triatomines as vectors to reach and infect mammals. A key question to be answered about vector-parasite interaction is why the immune defense and resistance of the insect against the parasites vary. Up to date data shows that the defense of triatomines against parasites includes cellular (phagocytosis, nodulation and encapsulation) and humoral (antimicrobial peptides, phenoloxidase and reactive oxygen and nitrogen species) responses. The immune response varies depending on the triatomine species, the trypanosome strain and species, and the insect intestinal microbiota. Despite significant advances to understand parasite-insect interaction, it is still unknown if triatomines have immune memory against parasites and if this memory may derive from tolerance to parasites attack. Therefore, a closer study of such interaction could contribute and establish new proposals to control the parasite at the vector level to reduce parasite transmission to mammals, including men. For instance, if immune memory exists in the triatomines, it would be interesting to induce weak infections in insects to find out if subsequent infections are less intense and if the insects succeed in eliminating the parasites.
Collapse
|
2
|
Dario MA, Pavan MG, Rodrigues MS, Lisboa CV, Kluyber D, Desbiez ALJ, Herrera HM, Roque ALR, Lima L, Teixeira MMG, Jansen AM. Trypanosoma rangeli Genetic, Mammalian Hosts, and Geographical Diversity from Five Brazilian Biomes. Pathogens 2021; 10:736. [PMID: 34207936 PMCID: PMC8230690 DOI: 10.3390/pathogens10060736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma rangeli is a generalist hemoflagellate that infects mammals and is transmitted by triatomines around Latin America. Due to its high genetic diversity, it can be classified into two to five lineages. In Brazil, its distribution outside the Amazon region is virtually unknown, and knowledge on the ecology of its lineages and on host species diversity requires further investigation. Here, we analyzed 57 T. rangeli samples obtained from hemocultures and blood clots of 1392 mammals captured in different Brazilian biomes. The samples were subjected to small subunit (SSU) rDNA amplification and sequencing to confirm T. rangeli infection. Phylogenetic inferences and haplotype networks were reconstructed to classify T. rangeli lineages and to infer the genetic diversity of the samples. The results obtained in our study highlighted both the mammalian host range and distribution of T. rangeli in Brazil: infection was observed in five new species (Procyon cancrivorous, Priodontes maximum, Alouatta belzebul, Sapajus libidinosus, and Trinomys dimidiatus), and transmission was observed in the Caatinga biome. The coati (Nasua nasua) and capuchin monkey (S. libidinosus) are the key hosts of T. rangeli. We identified all four T. rangeli lineages previously reported in Brazil (A, B, D, and E) and possibly two new genotypes.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-36, Brazil;
| | - Marina Silva Rodrigues
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Danilo Kluyber
- Associate Researcher, Naples Zoo at Caribbeans Gardens, Naples, FL 34102, USA;
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande 79037-100, Brazil;
| | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande 79037-100, Brazil;
| | - Heitor Miraglia Herrera
- Pós-Graduação em Ciência Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil;
- Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande 79117-900, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Luciana Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (L.L.); (M.M.G.T.)
| | - Marta M. G. Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (L.L.); (M.M.G.T.)
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| |
Collapse
|
3
|
Ferreira RC, Teixeira CF, de Sousa VFA, Guarneri AA. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Parasitol Res 2018; 117:1737-1744. [PMID: 29626223 DOI: 10.1007/s00436-018-5854-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Trypanosoma rangeli is a protozoan parasite that infects mammals and triatomines, causing different levels of pathogenicity in its invertebrate vectors, particularly those from the genus Rhodnius. We have recently shown that temperature can modulate T. rangeli growth during in vitro culture, as well as its in vivo pathogenicity to R. prolixus. In the present study, we investigated colonization of R. prolixus by T. rangeli and assessed the role of temperature and vector nutrition on parasite development and multiplication. We infected nymphs and either assessed parasite density in the first hours after the ingestion of the infected blood or maintained the nymphs for up to 60 days at different temperatures (21, 24, 27, and 30 °C) and under different blood-feeding schedules (either every 15 days, or on day 30 post infection only), with parasite development and multiplication measured on days 15, 30, and 60 post infection. In the first hours after ingesting infected blood, epimastigogenesis not only occurred in the anterior midgut, but a stable parasite population also established in this intestinal region. T. rangeli subsequently colonized all intestinal regions examined, but with fewer parasites being found in the rectum. The number of parasites was only affected by higher temperatures (27 and 30 °C) during the beginning of the infection (15 days post infection). Nutritional status of the vector also had a significant effect on parasite development, as reduced blood-feeding decreased infection rates by approximately 30%.
Collapse
Affiliation(s)
- Roberta Carvalho Ferreira
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-009, Brazil
| | - Cínthia Firmo Teixeira
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-009, Brazil
| | - Vinícius Fernandes A de Sousa
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-009, Brazil
| | - Alessandra A Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-009, Brazil.
| |
Collapse
|
4
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
6
|
Peterson JK, Graham AL. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector? JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:27-33. [PMID: 27232121 DOI: 10.1111/jvec.12190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 06/05/2023]
Abstract
The phrase, "T. rangeli is pathogenic to its insect vector," is commonly found in peer-reviewed publications on the matter, such that it has become the orthodox view of this interaction. In a literature survey, we identified over 20 papers with almost the exact phrase and several others alluding to it. The idea is of particular importance in triatomine population dynamics and the study of vector-borne T. cruzi transmission, as it could mean that triatomines infected with T. rangeli have lower fitness than uninfected insects. Trypanosoma rangeli pathogenicity was first observed in a series of studies carried out over fifty years ago using the triatomine species Rhodnius prolixus. However, there are few studies of the effect of T. rangeli on its other vector species, and several of the studies were carried out with R. prolixus under non-physiological conditions. Here, we re-evaluate the published studies that led to the conclusion that T. rangeli is pathogenic to its vector, to determine whether or not this indeed is the "true" effect of T. rangeli on its triatomine vector.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, U.S.A..
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, U.S.A
| |
Collapse
|
7
|
Ocaña-Mayorga S, Aguirre-Villacis F, Pinto CM, Vallejo GA, Grijalva MJ. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador. Vector Borne Zoonotic Dis 2015; 15:732-42. [PMID: 26645579 DOI: 10.1089/vbz.2015.1794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.
Collapse
Affiliation(s)
- Sofia Ocaña-Mayorga
- 1 Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador , and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Fernanda Aguirre-Villacis
- 2 Life Sciences Department, University of the Army Forces-ESPE, Sangolqui, Ecuador, and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| | - C Miguel Pinto
- 3 Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC; Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York; and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| | - Gustavo A Vallejo
- 4 Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Departamento de Biología, Universidad de Tolima , Ibagué, Colombia
| | - Mario J Grijalva
- 5 Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| |
Collapse
|
8
|
Isolation and molecular characterization of a major hemolymph serpin from the triatomine, Panstrongylus megistus. Parasit Vectors 2014; 7:23. [PMID: 24423259 PMCID: PMC3898217 DOI: 10.1186/1756-3305-7-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Chagas disease kills 2.5 thousand people per year of 15 million persons infected in Latin America. The disease is caused by the protozoan, Trypanosome cruzi, and vectored by triatomine insects, including Panstrongylus megistus, an important vector in Brazil. Medicines treating Chagas disease have unpleasant side effects and may be ineffective, therefore, alternative control techniques are required. Knowledge of the T. cruzi interactions with the triatomine host needs extending and new targets/strategies for control identified. Serine and cysteine peptidases play vital roles in protozoan life cycles including invasion and entry of T. cruzi into host cells. Peptidase inhibitors are, therefore, promising targets for disease control. Methods SDS PAGE and chromatograpy detected and isolated a P. megistus serpin which was peptide sequenced by mass spectrometry. A full amino acid sequence was obtained from the cDNA and compared with other insect serpins. Reverse transcription PCR analysis measured serpin transcripts of P. megistus tissues with and without T. cruzi infection. Serpin homology modeling used the Swiss Model and Swiss-PDB viewer programmes. Results The P. megistus serpin (PMSRP1) has a ca. 40 kDa molecular mass with 404 amino acid residues. A reactive site loop contains a highly conserved hinge region but, based on sequence alignment, the normal cleavage site for serine proteases at P1-P1′ was translocated to the putative position P4′-P5′. A small peptide obtained corresponded to the C-terminal 40 amino acid region. The secondary structure of PMSRP1 indicated nine α-helices and three β-sheets, similar to other serpins. PMSRP1 transcripts occurred in all tested tissues but were highest in the fat body and hemocytes. Levels of mRNA encoding PMSRP1 were significantly modulated in the hemocytes and stomach by T. cruzi infection indicating a role for PMSRP1 in the parasite interactions with P. megistus. Conclusions For the first time, a constitutively expressed serpin has been characterized from the hemolymph of a triatomine. This opens up new research avenues into the roles of serine peptidases in the T. cruzi/P. megistus association. Initial experiments indicate a role for PMSRP1 in T. cruzi interactions with P. megistus and will lead to further functional studies of this molecule.
Collapse
|
9
|
Grisard EC, Stoco PH, Wagner G, Sincero TCM, Rotava G, Rodrigues JB, Snoeijer CQ, Koerich LB, Sperandio MM, Bayer-Santos E, Fragoso SP, Goldenberg S, Triana O, Vallejo GA, Tyler KM, Dávila AMR, Steindel M. Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 2010; 174:18-25. [PMID: 20600354 DOI: 10.1016/j.molbiopara.2010.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/24/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022]
Abstract
Two species of the genus Trypanosoma infective to humans have been extensively studied at a cell and molecular level, but study of the third, Trypanosoma rangeli, remains in relative infancy. T. rangeli is non-pathogenic, but is frequently mistaken for the related Chagas disease agent Trypanosoma cruzi with which it shares vectors, hosts, significant antigenicity and a sympatric distribution over a wide geographical area. In this study, we present the T. rangeli gene expression profile as determined by the generation of ESTs (Expressed Sequence Tags) and ORESTES (Open Reading Frame ESTs). A total of 4208 unique high quality sequences were analyzed, composed from epimastigote and trypomastigote forms of SC-58 and Choachí strains, representing the two major phylogenetic lineages of this species. Comparative analyses with T. cruzi and other parasitic kinetoplastid species allowed the assignment of putative biological functions to most of the sequences generated and the establishment of an annotated T. rangeli gene expression database. Even though T. rangeli is apathogenic to mammals, genes associated with virulence in other pathogenic kinetoplastids were found. Transposable elements and genes associated mitochondrial gene expression, specifically RNA editing components, are also described for the first time. Our studies confirm the close phylogenetic relationship between T. cruzi and T. rangeli and enable us to make an estimate for the size of the T. rangeli genome repertoire ( approximately 8500 genes).
Collapse
Affiliation(s)
- Edmundo C Grisard
- Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paredes-Esquivel C, Lecaros E, Aguliar-Rosales M, Acosta HS, Castellanos P. Entomological factors affecting the low endemicity of Chagas disease in Nazca, Southwestern Peru. Vector Borne Zoonotic Dis 2009; 10:341-6. [PMID: 19874184 DOI: 10.1089/vbz.2009.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chagas disease is prevalent in Peru. The province of Nazca, in the southwestern region of the country, shows a high intradomiciliary infestation rate of Triatoma infestans bugs. Although the vector is present, the number of Chagas disease cases appears to be much lower than those reported in the neighboring region of Arequipa. We examined 624 T. infestans from Nazca to determine the current Trypanosoma cruzi infection rates, and found that no bugs were infected with this parasite. These results contrast with those found in Arequipa, where 19-30% triatomines have been reported infected. To compare their vectorial capacity, we infected 30 T. infestans specimens, selected both from Nazca and Arequipa, by feeding bugs on T. cruzi-infected mice. The parasites developed all stages expected in the vector; furthermore, the infective stage, metacyclic trypomastigote, was found in both insect populations from the second week after infection. In addition, those insects that accepted to be fed with mice blood defecated immediately after finishing blood meal, indicating that they might be efficient vectors. We maintain that differences observed in infection rates between vectors from Nazca and Arequipa may be explained by differences in host availability. In Arequipa hosts are mainly small animals, whereas in Nazca the main blood source comes from birds, which are refractory to the infection.
Collapse
|
11
|
Araújo CA, Waniek PJ, Jansen AM. An Overview of Chagas Disease and the Role of Triatomines on Its Distribution in Brazil. Vector Borne Zoonotic Dis 2009; 9:227-34. [DOI: 10.1089/vbz.2008.0185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Catarina A.C. Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Peter J. Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana M. Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Cabrine-Santos M, Ferreira KA, Tosi LR, Lages-Silva E, Ramírez LE, Pedrosa AL. Karyotype variability in KP1(+) and KP1(-) strains of Trypanosoma rangeli isolated in Brazil and Colombia. Acta Trop 2009; 110:57-64. [PMID: 19283897 DOI: 10.1016/j.actatropica.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the present study, the molecular karyotypes of 12 KP1(+) and KP1(-) Trypanosoma rangeli strains were determined and 10 different molecular markers were hybridized to the chromosomes of the parasite, including seven obtained from T. rangeli [ubiquitin hydrolase (UH), a predicted serine/threonine protein kinase (STK), hexose transporter, hypothetical protein, three anonymous sequences] and three from Trypanosoma cruzi [ubiquitin-conjugating enzyme E2 (UBE2), ribosomal RNA methyltransferase (rRNAmtr), proteasome non-ATPase regulatory subunit 6 (PSMD6)]. Despite intraspecific variation, analysis of the karyotype profiles permitted the division of the T. rangeli strains into two groups coinciding with the KP1(+) and KP1(-) genotypes. Southern blot hybridization showed that, except for the hexose transporter probe, all other probes produced distinct patterns able to differentiate the KP1(+) and KP1(-) genotypes. The UH, STK and An-1A04 probes exclusively hybridized to the chromosomes of KP1(+) strains and can be used as markers of this group. In addition, the UBE2, rRNAmtr and PSMD6 markers, which are present in a conserved region in all trypanosomatid species sequenced so far, co-hybridized to the same T. rangeli chromosomal bands, suggesting the occurrence of gene synteny in these species. The finding of distinct molecular karyotypes in KP1(+) and KP1(-) strains of T. rangeli is noteworthy and might be used as a new approach to the study of genetic variability in this parasite. Together with the Southern blot hybridization results, these findings demonstrate that differences at the kDNA level might be associated with variations in nuclear DNA.
Collapse
|
13
|
Maia Da Silva F, Junqueira ACV, Campaner M, Rodrigues AC, Crisante G, Ramirez LE, Caballero ZCE, Monteiro FA, Coura JR, Añez N, Teixeira MMG. Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol Ecol 2007; 16:3361-73. [PMID: 17688539 DOI: 10.1111/j.1365-294x.2007.03371.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To make reliable interpretations about evolutionary relationships between Trypanosoma rangeli lineages and their insect vectors (triatomine bugs of the genus Rhodnius) and, thus, about the determinant factors of lineage segregation within T. rangeli, we compared phylogenies of parasite isolates and vector species. Sixty-one T. rangeli isolates from invertebrate and vertebrate hosts were initially evaluated in terms of polymorphism of the spliced-leader gene (SL). Further analysis based on SL and SSUrRNA sequences from 33 selected isolates, representative of the overall phylogenetic diversity and geographical range of T. rangeli, supported four phylogenetic lineages within this species. By comparing the phylogeny of Rhodnius species with that inferred for T. rangeli isolates and through analysis of the geographical range of the isolates, we showed that there is a very significant overlap in the distribution of Rhodnius species and T. rangeli lineages. Congruence between phylogeographical analysis of both T. rangeli lineages and complexes of Rhodnius species are consistent with the hypothesis of a long coexistence of parasites and their vectors, with lineage divergence associated with sympatric species of Rhodnius apparently without association with particular vertebrate hosts. Separation of T. rangeli isolates from vectors of distinct complexes living in sympatry favours the absence of gene flow between the lineages and suggests evolution of T. rangeli lineages in independent transmission cycles, probably associated to specific Rhodnius spp. ecotopes. A polymerase chain reaction assay based on SL intergenic sequences was developed for simultaneous identification and lineage genotyping of T. rangeli in epidemiological surveys.
Collapse
Affiliation(s)
- F Maia Da Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo, SP, 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|