1
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Cotes-Perdomo AP, Sánchez-Vialas A, Thomas R, Jenkins A, Uribe JE. New insights into the systematics of the afrotropical Amblyomma marmoreum complex (Acari: Ixodidae) and the genome of a novel Rickettsia africae strain using morphological and metagenomic approaches. Ticks Tick Borne Dis 2024; 15:102323. [PMID: 38387163 DOI: 10.1016/j.ttbdis.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The Amblyomma marmoreum complex includes afrotropical species, such as Amblyomma sparsum, a three-host tick that parasitizes reptiles, birds, and mammals, and is a recognized vector of Ehrlichia ruminantium. However, the lack of morphological, genetic and ecological data on A. sparsum has caused considerable confusion in its identification. In this study, we used microscopy and metagenomic approaches to analyze A. sparsum ticks collected from a puff adder snake (Bitis arietans) in southwest Senegal (an endemic rickettsioses area) in order to supplement previous morphological descriptions, provide novel genomic data for the A. marmoreum complex, and describe the genome of a novel spotted fever group Rickettsia strain. Based on stereoscope and scanning electron microscopy (SEM) morphological evaluations, we provide high-quality images and new insights about punctation and enameling in the adult male of A. sparsum to facilitate identification for future studies. The metagenomic approach allowed us assembly the complete mitochondrial genome of A. sparsum, as well as the nearly entire chromosome and complete plasmid sequences of a novel Rickettsia africae strain. Phylogenomic analyses demonstrated a close relationship between A. sparsum and Amblyomma nuttalli for the first time and confirmed the position of A. sparsum within the A. marmoreum complex. Our results provide new insights into the systematics of A. sparsum and A. marmoreum complex, as well as the genetic diversity of R. africae in the Afrotropical region. Future studies should consider the possibility that A. sparsum may be a vector for R. africae.
Collapse
Affiliation(s)
- Andrea P Cotes-Perdomo
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern, Norway; Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Alberto Sánchez-Vialas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Richard Thomas
- Facultad de Ciencias Veterinarias, Departamento de Ciencia Animal, Universidad de Concepción, Chillán, Chile
| | - Andrew Jenkins
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern, Norway
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2José Gutiérrez Abascal 2, Madrid 28006, Spain.
| |
Collapse
|
3
|
Vanat V, Aeby S, Greub G. Ticks and Chlamydia-Related Bacteria in Swiss Zoological Gardens Compared to in Contiguous and Distant Control Areas. Microorganisms 2023; 11:2468. [PMID: 37894126 PMCID: PMC10609390 DOI: 10.3390/microorganisms11102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Ticks are vectors of numerous agents of medical importance and may be infected by various Chlamydia-related bacteria, such as members of Parachlamydiaceae and Rhabdochlamydiaceae families, which are sharing the same biphasic life cycle with the pathogenic Chlamydia. However, the veterinary importance of ticks and of their internalized pathogens remains poorly studied. Thus, we wondered (i) whether the prevalence of ticks was higher in zoological gardens than in control areas with similar altitude, vegetation, humidity and temperature, and (ii) whether the presence of Chlamydia-related bacteria in ticks may vary according to the environment in which the ticks are collected. A total of 212 Ixodes ricinus ticks were collected, and all were tested for the presence of DNA from any member of the Chlamydiae phylum using a pan-Chlamydiae quantitative PCR (qPCR). We observed a higher prevalence of ticks outside animal enclosures in both zoos, compared to in enclosures. Tick prevalence was also higher outside zoos, compared to in enclosures. With 30% (3/10) of infected ticks, the zoological gardens presented a prevalence of infected ticks that was higher than that in contiguous areas (13.15%, 10/76), and higher than the control distant areas (8.65%, 9/104). In conclusion, zoological gardens in Switzerland appear to contain fewer ticks than areas outside zoological gardens. However, ticks from zoos more often contain Chlamydia-like organisms than ticks from contiguous or distant control areas.
Collapse
Affiliation(s)
- Vincent Vanat
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Sébastien Aeby
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
- Service of Infectious Diseases, University Hospital Center (CHUV), 1005 Lausanne, Switzerland
| |
Collapse
|
4
|
Hrnková J, Golovchenko M, Musa AS, Needham T, Italiya J, Ceacero F, Kotrba R, Grubhoffer L, Rudenko N, Cerný J. Borrelia spirochetes in European exotic farm animals. Front Vet Sci 2022; 9:996015. [PMID: 36246336 PMCID: PMC9554260 DOI: 10.3389/fvets.2022.996015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Ticks transmit a broad spectrum of pathogens, threatening both animal and human health. Tick survival and proliferation are strongly dependent on host selection and suitability. The hard tick Ixodes ricinus, which is widespread throughout most of Europe, is a host generalist capable of feeding on many different vertebrate species. Pasture-kept exotic farm animals may be at a high risk for tick and tick-borne pathogens infestations but research characterizing this is currently lacking. This study focused on the detection of Borrelia spirochetes (including Borrelia miyamotoi) in exotic farm animals. Using nested-PCR with Borrelia-specific primers, 121 serum samples from 54 exotic farm animals of several species bred in four different farms in Bohemia and Moravia (Czechia) were tested. Positive samples were sequenced for the identification of Borrelia species. The prevalence of Borrelia DNA in the samples ranged from 13 to 67%, depending on the sampling site. The sequencing results confirmed the DNA presence of multiple spirochete species from the Borrelia burgdorferi sensu lato complex. Only one sample from an ostrich (Struthio camelus) was found to be positive for Borrelia myiamotoi. The results show that exotic farm animals can serve as hosts for hard ticks and can be infected by Borrelia spirochetes, transmitted by hard ticks. Therefore, these animals could play a relevant role in maintaining Borrelia spirochetes in nature.
Collapse
Affiliation(s)
- Johana Hrnková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Johana Hrnková
| | - Marina Golovchenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | - Abubakar Sadiq Musa
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Tersia Needham
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jignesh Italiya
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Francisco Ceacero
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Radim Kotrba
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Ethology, Institute of Animal Science, Prague, Czechia
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
- Faculty of Sciences, University of South Bohemia, Ceské Budějovice, Czechia
| | - Natalie Rudenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | - Jirí Cerný
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Behnke-Borowczyk J, Gwiazdowicz DJ. Do ectoparasites of the slow loris Nycticebus pygmaeus, pose a danger to humans? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractStaff working with nocturnal mammals at Poznań Zoo, noticed erythematous bite marks on their hands and parts of their necks. No perpetrators were immediately obvious, but the bite marks were experienced mainly by persons caring for the slow loris Nycticebus pygmaeus. The purpose of this study was to collect ectoparasites from four N. pygmaeus, to identify the species involved and to ascertain whether they carry any pathogenic organisms that might pose a health risk to people who have been bitten. A total of 51 Ornithonyssus bacoti (Mesostigmata: Macronyssidae) mites were collected from the coats of four slow loris, 37 of which were used for molecular analysis to determine if the mites were carrying any disease-causing organisms. DNA was extracted and screened for candidate pathogens including Babesia spp. and Rickettsia spp., but none were identified. The authors suspect that because the zoo differs in its sanitary and veterinary conditions from those found in nature, the results obtained here may differ markedly from those existing in the natural environment. Although we cannot be certain at this stage that the mites did not carry other pathogens in addition to those that were detectable by the primers that were used, the erythematous reaction to bite marks likely reflects a response to secretions of the mites rather than to transmitted pathogens.
Collapse
|
6
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
7
|
Hedgehogs, Squirrels, and Blackbirds as Sentinel Hosts for Active Surveillance of Borrelia miyamotoi and Borrelia burgdorferi Complex in Urban and Rural Environments. Microorganisms 2020; 8:microorganisms8121908. [PMID: 33266311 PMCID: PMC7760222 DOI: 10.3390/microorganisms8121908] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Lyme borreliosis (LB), caused by spirochetes of the Borrelia burgdorferi sensu lato (s.l.) complex, is one of the most common vector-borne zoonotic diseases in Europe. Knowledge about the enzootic circulation of Borrelia pathogens between ticks and their vertebrate hosts is epidemiologically important and enables assessment of the health risk for the human population. In our project, we focused on the following vertebrate species: European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula). The cadavers of accidentally killed animals used in this study constitute an available source of biological material, and we have confirmed its potential for wide monitoring of B. burgdorferi s.l. presence and genospecies diversity in the urban environment. High infection rates (90% for E. erinaceus, 73% for E. roumanicus, 91% for S. vulgaris, and 68% for T. merula) were observed in all four target host species; mixed infections by several genospecies were detected on the level of individuals, as well as in particular tissue samples. These findings show the usefulness of multiple tissue sampling as tool for revealing the occurrence of several genospecies within one animal and the risk of missing particular B. burgdorferi s.l. genospecies when looking in one organ alone.
Collapse
|
8
|
Vancová M, Rudenko N, Vaněček J, Golovchenko M, Strnad M, Rego ROM, Tichá L, Grubhoffer L, Nebesářová J. Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study. Front Microbiol 2017; 8:596. [PMID: 28443079 PMCID: PMC5387694 DOI: 10.3389/fmicb.2017.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Abstract
To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.
Collapse
Affiliation(s)
- Marie Vancová
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Nataliia Rudenko
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia
| | - Jiří Vaněček
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia
| | | | - Martin Strnad
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Ryan O M Rego
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Lucie Tichá
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Libor Grubhoffer
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Jana Nebesářová
- Biology Centre CAS, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, Charles University in PragueCzechia
| |
Collapse
|
9
|
Urbanová V, Hajdušek O, Hönig Mondeková H, Šíma R, Kopáček P. Tick Thioester-Containing Proteins and Phagocytosis Do Not Affect Transmission of Borrelia afzelii from the Competent Vector Ixodes ricinus. Front Cell Infect Microbiol 2017; 7:73. [PMID: 28361038 PMCID: PMC5352706 DOI: 10.3389/fcimb.2017.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
The present concept of the transmission of Lyme disease from Borrelia-infected Ixodes sp. ticks to the naïve host assumes that a low number of spirochetes that manage to penetrate the midgut epithelium migrate through the hemocoel to the salivary glands and subsequently infect the host with the aid of immunomodulatory compounds present in tick saliva. Therefore, humoral and/or cellular immune reactions within the tick hemocoel may play an important role in tick competence to act as a vector for borreliosis. To test this hypothesis we have examined complement-like reactions in the hemolymph of the hard tick Ixodes ricinus against Borrelia afzelii (the most common vector and causative agent of Lyme disease in Europe). We demonstrate that I. ricinus hemolymph does not exhibit borreliacidal effects comparable to complement-mediated lysis of bovine sera. However, after injection of B. afzelii into the tick hemocoel, the spirochetes were efficiently phagocytosed by tick hemocytes and this cellular defense was completely eliminated by pre-injection of latex beads. As tick thioester-containing proteins (T-TEPs) are components of the tick complement system, we performed RNAi-mediated silencing of all nine genes encoding individual T-TEPs followed by in vitro phagocytosis assays. Silencing of two molecules related to the C3 complement component (IrC3-2 and IrC3-3) significantly suppressed phagocytosis of B. afzelii, while knockdown of IrTep (insect type TEP) led to its stimulation. However, RNAi-mediated silencing of T-TEPs or elimination of phagocytosis by injection of latex beads in B. afzelii-infected I. ricinus nymphs had no obvious impact on the transmission of spirochetes to naïve mice, as determined by B. afzelii infection of murine tissues following tick infestation. This result supports the concept that Borrelia spirochetes are capable of avoiding complement-related reactions within the hemocoel of ticks competent to transmit Lyme disease.
Collapse
Affiliation(s)
- Veronika Urbanová
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology Ceske Budejovice, Czechia
| | - Ondřej Hajdušek
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology Ceske Budejovice, Czechia
| | - Helena Hönig Mondeková
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology Ceske Budejovice, Czechia
| | - Radek Šíma
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology Ceske Budejovice, Czechia
| | - Petr Kopáček
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology Ceske Budejovice, Czechia
| |
Collapse
|
10
|
Kraiczy P. Hide and Seek: How Lyme Disease Spirochetes Overcome Complement Attack. Front Immunol 2016; 7:385. [PMID: 27725820 PMCID: PMC5036304 DOI: 10.3389/fimmu.2016.00385] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022] Open
Abstract
Overcoming the first line of the innate immune system is a general hallmark of pathogenic microbes to avoid recognition and to enter the human host. In particular, spirochetes belonging to the Borrelia burgdorferi sensu lato complex have developed various means to counter the immune response and to successfully survive in diverse host environments for a prolonged period of time. In regard to complement resistance, Borrelia utilize a plethora of immune evasion strategies involves capturing of host-derived complement regulators, terminating complement activation as well as shedding of cell-destroying complement complexes to manipulate and to expeditiously inhibit human complement. Owing to their mode of action, the interacting surface-exposed proteins identified among B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, Borrelia spielmanii, and Borrelia bavariensis can be classified into at least two major categories, namely, molecules that directly interfere with distinct complement components including BBK32, CspA, BGA66, BGA71, and a CD59-like protein or molecules, which indirectly counteract complement activation by binding various complement regulators such as Factor H, Factor H-like protein 1 (FHL-1), Factor H-related proteins FHR-1, FHR-2, or C4Bp. The latter group of genetically and structurally unrelated proteins has been collectively referred to as “complement regulator-acquiring surface proteins” and consists of CspA, CspZ, ErpA, ErpC, ErpP, and the as yet unidentified protein p43. This review focuses on the current knowledge of immune evasion mechanisms exhibited by Lyme disease spirochetes and highlights the role of complement-interfering, infection-associated molecules playing an important part in these processes. Deciphering the immune evasion strategies may provide novel avenues for improved diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|