1
|
Ali Mude AS, Nageye YA, Bello KE. Current Epidemiological Status of Chikungunya Virus Infection in East Africa: A Systematic Review and Meta-Analysis. J Trop Med 2024; 2024:7357911. [PMID: 39492843 PMCID: PMC11530290 DOI: 10.1155/2024/7357911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background: The incidence of Chikungunya in tropical Africa is still of major epidemiological significance. This study aims to determine the prevalence of chikungunya in East Africa through a systematic review and meta-analysis of published studies. Methods: We conducted a comprehensive search across six electronic databases-Web of Science, PubMed, ScienceDirect, Scopus, and Google Scholar-using specific keywords to address the worldwide impact of chikungunya following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A meta-analysis was performed on our eligible studies using the random effect model. Results: Our search returned 40 eligible articles involving 4122 Chikungunya cases in 13 East African nations. These studies, conducted between 2014 and 2024 across 13 East African nations, provided diverse data on chikungunya prevalence. The overall pooled prevalence of chikungunya in East Africa was 20.6% (95% CI: 18.8%-22.5% and I 2 = 99.62%). Subgroup analyses revealed variations in prevalence across different countries, study designs, detection methods, and publication years. Notably, Rwanda and Djibouti exhibited high prevalence rates of 63.0% and 50.4%, respectively, while Kenya and Somalia reported a moderate prevalence of 12.2%. The detection methods also influenced prevalence rates, with RT-PCR studies indicating a higher prevalence (28.3%) compared to ELISA (19.3%). Conclusion: The study highlights the significant burden of chikungunya in East Africa, and the findings underscore the need for targeted public health interventions and improved surveillance to manage and control chikungunya outbreaks in the region.
Collapse
Affiliation(s)
- Abdirasak Sharif Ali Mude
- Department of Microbiology and Laboratory Science, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Yahye Ahmed Nageye
- Department of Microbiology and Laboratory Science, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State (Prince Abubakar Audu) University, Anyigba PMB 1008, Kogi State, Nigeria
| |
Collapse
|
2
|
Hungwe FTT, Laycock KM, Ntereke TD, Mabaka R, Paganotti GM. A historical perspective on arboviruses of public health interest in Southern Africa. Pathog Glob Health 2024; 118:131-159. [PMID: 38082563 PMCID: PMC11141323 DOI: 10.1080/20477724.2023.2290375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Arboviruses are an existing and expanding threat globally, with the potential for causing devastating health and socioeconomic impacts. Mitigating this threat necessitates a One Health approach that integrates vector surveillance, rapid disease detection, and innovative prevention and control measures. In Southern Africa, limited data on the epidemiology of arboviruses, their vectors, and their hosts prevent an effective response. We reviewed the current knowledge on arboviruses in Southern Africa and identified opportunities for further research. A literature search was conducted to identify studies published on arboviruses in 10 tropical and temperate countries of the Southern African Development Community (SADC) from 1900 onward. We identified 280 studies, half (51.1%) originating from South Africa, that described 31 arboviral species, their vectors, and their clinical effects on hosts reported in the region. Arboviral research flourished in the SADC in the mid-20th century but then declined, before reemerging in the last two decades. Recent research consists largely of case reports describing outbreaks. Historical vector surveillance and serosurveys from the mid-20th century suggest that arboviruses are plentiful across Southern Africa, but large gaps remain in the current understanding of arboviral distribution, transmission dynamics, and public health impact.
Collapse
Affiliation(s)
- Faith T. T. Hungwe
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katherine M. Laycock
- The Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Rorisang Mabaka
- School of Allied Health Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
3
|
Kayange N, Hau DK, Pain K, Mshana SE, Peck R, Gehring S, Groendahl B, Koliopoulos P, Revocatus B, Msaki EB, Malande O. Seroprevalence of Dengue and Chikungunya Virus Infections in Children Living in Sub-Saharan Africa: Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1662. [PMID: 37892325 PMCID: PMC10605353 DOI: 10.3390/children10101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Dengue and chikungunya viruses are frequent causes of malarial-like febrile illness in children. The rapid increase in virus transmission by mosquitoes is a global health concern. This is the first systematic review and meta-analysis of the childhood prevalence of dengue and chikungunya in Sub-Saharan Africa (SSA). A comprehensive search of the MEDLINE (Ovid), Embase (Ovid), and Cochrane Library (Wiley) databases was conducted on 28 June 2019, and updated on 12 February 2022. The search strategy was designed to retrieve all articles pertaining to arboviruses in SSA children using both controlled vocabulary and keywords. The pooled (weighted) proportion of dengue and chikungunya was estimated using a random effect model. The overall pooled prevalence of dengue and chikungunya in SSA children was estimated to be 16% and 7%, respectively. Prevalence was slightly lower during the period 2010-2020 compared to 2000-2009. The study design varied depending on the healthcare facility reporting the disease outbreak. Importantly, laboratory methods used to detect arbovirus infections differed. The present review documents the prevalence of dengue and chikungunya in pediatric patients throughout SSA. The results provide unprecedented insight into the transmission of dengue and chikungunya viruses among these children and highlight the need for enhanced surveillance and controlled methodology.
Collapse
Affiliation(s)
- Neema Kayange
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Duncan K Hau
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Kevin Pain
- Samuel J. Wood Library and C.V. Starr Biomedical Information Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA;
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Robert Peck
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
- Center for Global Health, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephan Gehring
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Britta Groendahl
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Philip Koliopoulos
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Baraka Revocatus
- Department of Data and Statistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Evarist B Msaki
- Department of Epidemiology and Biostatistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Ombeva Malande
- East Africa Centre for Vaccines and Immunization (ECAVI), Kampala P.O. Box 3040, Uganda;
- Department of Public Health Phamarmacy, Sefako Makgatho Health Sciences University, Pretoria P.O. Box 60, South Africa
- Department of Paediatrics & Child Health, Makerere University, Kampala P.O. Box 7072, Uganda
- Department of Public Health, UNICAF University, Lusaka P.O. Box 20842, Zambia
| |
Collapse
|
4
|
Costa LB, Barreto FKDA, Barreto MCA, dos Santos THP, de Andrade MDMO, Farias LABG, de Freitas ARR, Martinez MJ, Cavalcanti LPDG. Epidemiology and Economic Burden of Chikungunya: A Systematic Literature Review. Trop Med Infect Dis 2023; 8:301. [PMID: 37368719 PMCID: PMC10302198 DOI: 10.3390/tropicalmed8060301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya (CHIK) is a re-emerging viral infection endemic in tropical and subtropical areas. While the typical clinical presentation is an acute febrile syndrome, long-term articular complications and even death can occur. This review characterizes the global epidemiological and economic burden of chikungunya. The search included studies published from 2007 to 2022 in MEDLINE, Embase, LILACS, and SciELO for a thorough evaluation of the literature. Rayyan software was used for data analysis, and data were summarized descriptively and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seventy-six publications were included. Chikungunya is widely distributed in the tropics, including Africa, Asia, South America, and Oceania/the Pacific Islands, and co-circulates with other simultaneous arboviruses such as DENV, ZIKV, and YFV. Chikungunya infection can lead to chronic articular manifestations with a significant impact on the quality of life in the long term. In addition, it generates absenteeism and economic and social losses and can cause fatal infections in vulnerable populations, mainly in high-risk patients with co-morbidities and at the extremes of age. Reported costs associated with CHIKV diseases are substantial and vary by region, age group, and public/private delivery of healthcare services. The chikungunya disease burden includes chronicity, severe infections, increased hospitalization risks, and associated mortality. The disease can impact the economy in several spheres, significantly affecting the health system and national economies. Understanding and measuring the full impact of this re-emerging disease is essential.
Collapse
Affiliation(s)
- Lourrany Borges Costa
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Ceara (UFC), Ceara 60020-181, Brazil; (L.B.C.)
- Faculdade de Medicina, Universidade de Fortaleza (UNIFOR), Ceara 60811-905, Brazil
| | | | | | | | | | - Luís Arthur Brasil Gadelha Farias
- Hospital São Jose de Doenças Infecciosas, Ceara 60455-610, Brazil
- Faculdade de Medicina, Centro Universitário Christus (UNICHRISTUS), Ceara 60192-345, Brazil
| | | | - Miguel Julian Martinez
- Microbiology Department, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Luciano Pamplona de Góes Cavalcanti
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Ceara (UFC), Ceara 60020-181, Brazil; (L.B.C.)
- Faculdade de Medicina, Centro Universitário Christus (UNICHRISTUS), Ceara 60192-345, Brazil
| |
Collapse
|
5
|
Wainaina M, Vey da Silva DA, Dohoo I, Mayer-Scholl A, Roesel K, Hofreuter D, Roesler U, Lindahl J, Bett B, Al Dahouk S. A systematic review and meta-analysis of the aetiological agents of non-malarial febrile illnesses in Africa. PLoS Negl Trop Dis 2022; 16:e0010144. [PMID: 35073309 PMCID: PMC8812962 DOI: 10.1371/journal.pntd.0010144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background The awareness of non-malarial febrile illnesses (NMFIs) has been on the rise over the last decades. Therefore, we undertook a systematic literature review and meta-analysis of causative agents of non-malarial fevers on the African continent. Methodology We searched for literature in African Journals Online, EMBASE, PubMed, Scopus, and Web of Science databases to identify aetiologic agents that had been reported and to determine summary estimates of the proportional morbidity rates (PMr) associated with these pathogens among fever patients. Findings A total of 133 studies comprising 391,835 patients from 25 of the 54 African countries were eligible. A wide array of aetiologic agents were described with considerable regional differences among the leading agents. Overall, bacterial pathogens tested from blood samples accounted for the largest proportion. The summary estimates from the meta-analysis were low for most of the agents. This may have resulted from a true low prevalence of the agents, the failure to test for many agents or the low sensitivity of the diagnostic methods applied. Our meta-regression analysis of study and population variables showed that diagnostic methods determined the PMr estimates of typhoidal Salmonella and Dengue virus. An increase in the PMr of Klebsiella spp. infections was observed over time. Furthermore, the status of patients as either inpatient or outpatient predicted the PMr of Haemophilus spp. infections. Conclusion The small number of epidemiological studies and the variety of NMFI agents on the African continent emphasizes the need for harmonized studies with larger sample sizes. In particular, diagnostic procedures for NMFIs should be standardized to facilitate comparability of study results and to improve future meta-analyses. Reliable NMFI burden estimates will inform regional public health strategies. Previous systematic reviews have highlighted the research priorities of causative agents for non-malarial febrile illnesses by counting the number of publications attributed to an agent. However, proportional morbidity rates are calculated by dividing the number of cases with a specific disease (numerator) by the total number of diagnosed fever cases (denominator) and are better indicators of the relative importance of aetiological agents in a population. Therefore, we present the leading causes of non-malarial febrile illnesses in African patients in both healthcare and community settings. Preference is given to HIV-negative patients when data could be found. We also determined summary estimates of Brucella spp., Chikungunya virus, Dengue virus, Haemophilus spp., Klebsiella spp., Leptospira spp., non-typhoidal Salmonella spp., typhoidal Salmonella spp., Staphylococcus spp., and Streptococcus spp. The wide array of aetiological agents causing febrile illnesses on the African continent does not only complicate malaria control programs but may also hamper response to epidemic and pandemic illnesses such as Ebola and COVID-19. The harmonisation of diagnostics and study designs will reduce between-study differences, which may result in better estimates of disease burden on the continent and in the different African regions. This information is important for Pan-African surveillance and control efforts.
Collapse
Affiliation(s)
- Martin Wainaina
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ian Dohoo
- University of Prince Edward Island, Charlottetown, Canada
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kristina Roesel
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- International Livestock Research Institute, Nairobi, Kenya
| | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Johanna Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
6
|
Lobaloba Ingoba L, Adedoja A, Peko SM, Vairo F, Haider N, Kock R, Ippolito G, Zumla A, Nguimbi E, Pallerla SR, Velavan TP, Ntoumi F. Diagnosis of Chikungunya Virus in Febrile Patients From a Malaria Holoendemic Area. Int J Infect Dis 2021; 109:247-252. [PMID: 34174430 DOI: 10.1016/j.ijid.2021.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Accurate diagnosis of chikungunya (CHIK) is essential for effective disease management and surveillance. In a cohort of febrile Congolese patients, available diagnostic methods widely used in CHIK diagnosis were evaluated. In addition, plasma cytokines were quantified in CHIK patients and those coinfected with malaria compared with healthy controls. METHODS Between June and November 2019, a total of 107 febrile patients with suspected CHIK were subjected to differential diagnosis both for CHIK and malaria. Patients were screened for CHIK virus using molecular diagnosis by real-time PCR, serologic testing by IgM-specific and IgG-specific ELISAs, and lateral flow-based method with rapid diagnostic test (RDT), while malaria diagnosis was confirmed by PCR methods. Pro-inflammatory (IL-12, IL-16, IFN-γ, TNF-α) and anti-inflammatory (IL-4, IL-10, IL-13) cytokines were quantified in patients and healthy controls by ELISA assays. RESULTS Molecular diagnoses revealed that 57% (61/107) were positive for CHIK by RT-PCR, while serologic testing revealed 31% (33/107) and 9% (10/107) seropositivity for anti- IgM and IgG, respectively. None of the patients were CHIK RDT-positive. Also, 27% (29/107) were PCR-positive for malaria. Among the malaria-positive patients, 14% (15/107) were co-infected with CHIK and 13% (14/107) were monoinfection. Plasma IL-12 and TNF-α levels were increased in patients with malaria and IL-13 levels were increased in patients with co-infection (p<0.05). CONCLUSION Co-infection of malaria and CHIK were common in febrile Congolese patients. Real-time PCR was a better tool for detecting actual occurrences of CHIK in a malaria holoendemic area.
Collapse
Affiliation(s)
- Line Lobaloba Ingoba
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Ayodele Adedoja
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
| | - Simon Marie Peko
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Francesco Vairo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hertfordshire, UK
| | - Richard Kock
- The Royal Veterinary College, University of London, Hertfordshire, UK
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Ali Zumla
- Department of Infection, Division of Infection and Immunity, UCL Centre for Clinical Microbiology, Royal Free Campus, London, UK; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Etienne Nguimbi
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'gouabi, Brazzaville, Republic of Congo; Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Brazzaville, Republic of Congo
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Republic of Congo; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Le BCT, Ekalaksananan T, Thaewnongiew K, Phanthanawiboon S, Aromseree S, Phanitchat T, Chuerduangphui J, Suwannatrai AT, Alexander N, Overgaard HJ, Bangs MJ, Pientong C. Interepidemic Detection of Chikungunya Virus Infection and Transmission in Northeastern Thailand. Am J Trop Med Hyg 2020; 103:1660-1669. [PMID: 32700661 DOI: 10.4269/ajtmh.20-0293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chikungunya fever is a viral mosquito-borne, acute febrile illness associated with rash, joint pain, and occasionally prolonged polyarthritis. Chikungunya outbreaks have been reported worldwide including many provinces of Thailand. Although chikungunya virus (CHIKV) occurs in Thailand, details on its epidemiology are lacking compared with dengue, a common mosquito-borne disease in the country. Therefore, study on CHIKV and its epidemiology in both humans and mosquitoes is required to better understand its importance clinically and dynamics in community settings. So a prospective examination of virus circulation in human and mosquito populations in northeastern Thailand using serological and molecular methods, including the genetic characterization of the virus, was undertaken. The study was conducted among febrile patients in eight district hospitals in northeastern Thailand from June 2016 to October 2017. Using real-time PCR on the conserved region of nonstructural protein 1 gene, CHIKV was detected in eight (4.9%) of 161 plasma samples. Only one strain yielded a sequence of sufficient size allowing for phylogenetic analysis. In addition, anti-CHIKV IgM and IgG were detected in six (3.7%) and 17 (10.6%) patient plasma samples. The single sequenced sample belonged to the East/Central/South Africa (ECSA) genotype and was phylogenetically similar to the Indian Ocean sub-lineage. Adult Aedes mosquitoes were collected indoors and within a 100-m radius from the index case house and four neighboring houses. CHIKV was detected in two of 70 (2.9%) female Aedes aegypti mosquito pools. This study clearly demonstrated the presence and local transmission of the ECSA genotype of CHIKV in the northeastern region of Thailand.
Collapse
Affiliation(s)
- Bao Chi Thi Le
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, Hue, Vietnam.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Kesorn Thaewnongiew
- Department of Disease Control, Office of Disease Prevention and Control, Region 7 Khon Kaen Ministry of Public Health, Khon Kaen, Thailand
| | | | - Sirinart Aromseree
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Thipruethai Phanitchat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Neal Alexander
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hans J Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.,Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | - Chamsai Pientong
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Abstract
Since the identification of chikungunya virus (CHIKV), sporadic cases and outbreaks were reported in several African countries, on the Indian subcontinent, and in south-east Asia. In the last 20 years, there is a growing number of reports of CHIKV infections from African countries, but the overall picture of its circulation at the continent level remains ill-characterized because of under-diagnosis and under-reporting. Moreover, the public health impact of the infection in Africa is generally poorly understood, especially during outbreak situations. Our work has the aim to review available data on CHIKV circulation in Africa to facilitate the understanding of underlying reasons of its increased detection in the African continent.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Subissi
- Directorate Infectious Diseases in Humans Sciensano, Brussels, Belgium
| | - Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore Di Sanita (ISS), Rome, Italy
| |
Collapse
|
9
|
Rabelo VWH, Paixão ICNDP, Abreu PA. Targeting Chikungunya virus by computational approaches: from viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 2020; 24:63-78. [DOI: 10.1080/14728222.2020.1712362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| |
Collapse
|
10
|
Chelene IR, Ali S, Mula FI, Muianga AF, Monteiro VO, Oludele J, Chongo IS, José A, Amade NA, António VS, Gudo ES. Retrospective investigation of IgM antibodies against Zika virus in serum from febrile patients in Mozambique, 2009–2015. BMC Res Notes 2019; 12:469. [PMID: 31366379 PMCID: PMC6670129 DOI: 10.1186/s13104-019-4511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Zika virus (ZIKV) has emerged as an important health problem worldwide. The aim of this study was to investigate the occurrence, geographical distribution and trend of immunoglobulin M (IgM) antibodies against ZIKV between 2009 and 2015 in Mozambique. Results The median age of participants was 3 years [interquartile range (IQR): 1.0–6.0 years)] and 56.5% (480/850) of them were male. Of the 850 samples, 42 (4.9%) were positive for IgM antibodies against ZIKV. Positive samples were found in 9 provinces of the country. Frequency of IgM antibodies against ZIKV was slightly higher in patients aged 5–9 years old, and in the north region of the country.
Collapse
|
11
|
Chikungunya in Infants and Children: Is Pathogenesis Increasing? Viruses 2019; 11:v11030294. [PMID: 30909568 PMCID: PMC6466311 DOI: 10.3390/v11030294] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) was first extensively described in children during outbreaks in India and South Asia during the mid-1960s. Prior to the 2005 emergence of CHIKV on Reunion Island, CHIKV infection was usually described as a dengue-like illness with arthralgia in Africa and febrile hemorrhagic disease in Asia. Soon after the 2005 emergence, severe CNS consequences from vertical and perinatal transmission were described and as CHIKV continued to emerge in new areas over the next 10 years, severe manifestation of infection and sequelae were increasingly reported in infants and neonates. The following review describes the global reemergence and the syndromes of Chikungunya fever (CHIKF) in infants and children. The various manifestations of CHIKF are described and connected to the viral lineage that was documented in the area at the time the disease was described. The data show that certain manifestations of CHIKF occur with specific viral lineages and genetic motifs, which suggests that severe manifestations of CHIKF in the very young may be associated with the emergence of new viral lineages.
Collapse
|
12
|
Badolo A, Burt F, Daniel S, Fearns R, Gudo ES, Kielian M, Lescar J, Shi Y, von Brunn A, Weiss SR, Hilgenfeld R. Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Res 2018; 162:142-150. [PMID: 30597184 PMCID: PMC7132404 DOI: 10.1016/j.antiviral.2018.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 11/23/2022]
Abstract
The Third Tofo Advanced Study Week on Emerging and Re-Emerging Viruses (3rd TASW) was held in Praia do Tofo, Mozambique, from September 02 to 06, 2018. It brought together 55 participants from 10 African countries as well as from Belgium, China, Germany, Singapore, and the USA. Meeting sessions covered aspects of the epidemiology, diagnosis, molecular and structural biology, vaccine development, and antiviral drug discovery for emerging RNA viruses that are current threats in Africa and included flaviviruses (dengue and Zika), alphaviruses (chikungunya), coronaviruses, filoviruses (Ebola), influenza viruses, Crimean Congo hemorrhagic fever virus, Rift Valley fever Virus, Lassa virus, and others. Data were presented on recent flavivirus and/or chikungunyavirus outbreaks in Angola, Burkina Faso, and Mozambique. In addition, these viruses are endemic in many sub-Saharan countries. The TASW series on emerging viruses is unique in Africa and successful in promoting collaborations between researchers in Africa and other parts of the world, as well as among African scientists. This report summarizes the lectures held at the meeting and highlights advances in the field. The 3rd Tofo Advanced Study Week on Emerging and Re-emerging Viruses took place from September 2–6, 2018. African attendees came from Angola, Botswana, Burkina Faso, the CAR, Mozambique, Nigeria, S Africa, Tanzania and Zimbabwe. Other participants were from Europe, China, Singapore, and the USA. This unique meeting enabled scientists from Africa and elsewhere to discuss problems and initiate new collaborations. Presentations covered dengue virus, Zika, chikungunya, coronaviruses, Ebola, influenza, Rift Valley fever, CCHF, and RSV.
Collapse
Affiliation(s)
- Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Ouaga, Ouagadougou, Burkina Faso.
| | - Felicity Burt
- Division of Virology, National Health Laboratory Services and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Susan Daniel
- Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Rachel Fearns
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Julien Lescar
- Structural Biology and Biochemistry, Nanyang Technological University, Singapore.
| | - Yi Shi
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Albrecht von Brunn
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Site, Munich, Germany.
| | - Susan R Weiss
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rolf Hilgenfeld
- Institute of Biochemistry, University of Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, Lübeck, Germany.
| |
Collapse
|