Elimination of a closed population of the yellow fever mosquito, Aedes aegypti, through releases of self-limiting male mosquitoes.
PLoS Negl Trop Dis 2022;
16:e0010315. [PMID:
35576193 PMCID:
PMC9135344 DOI:
10.1371/journal.pntd.0010315]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/26/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Establishment of novel mosquito control technologies such as the use of genetically engineered insects typically involves phased testing to generate robust data-sets that support its safe and effective use as a vector control tool. In this study, we demonstrate the ability of the transgenic self-limiting OX513A Aedes aegypti strain to suppress a wild type Ae. aegypti population in an outdoor containment facility in India. OX513A is a genetically engineered Ae. aegypti strain with a repressible dominant self-limiting gene. When male adult OX513A mate with wild female adults, a single copy of the self-limiting gene is inherited by all the progeny, leading to death of >95% of progeny during larval/pupal development. A wild-type population of Ae. aegypti was established and stabilized during a 14 week period in five paired field cage units, each consisting of control and treatment cages, followed by weekly releases of OX513A male adults to suppress the target population. The successive introductions of OX513A male adults led to a consistent decline in wild type numbers eventually resulting in the elimination of Ae. aegypti from all treated cages within 10 to 15 weeks of release. This study demonstrates that Ae. aegypti elimination may be a realistic and achievable target in relatively isolated environments.
Aedes aegypti L. species is the primary vector responsible for transmission of the dengue virus worldwide including chikungunya, yellow fever and Zika virus. The experiment presented in the manuscript represents a study undertaken to demonstrate suppression of the wild type Ae. aegypti population in large outdoor field cages with natural exposure to the environment (physically-contained field cage facility) by sustained releases of male adults of OX513A Ae. aegypti strain. This investigation is a phase-2 contained study as per the World Health Organization guidelines for evaluation of genetically modified organisms and was recommended by the Indian regulatory board. This experiment demonstrates suppression of wild type Ae. aegypti population by sustained releases of OX513A male adults in a contained facility. The prospect of the project is to demonstrate and implement the technology for controlling/suppression of the Ae. aegypti vector in the open field environment.
Collapse