1
|
Li J, Shang MY, Deng SL, Li M, Su N, Ren XD, Sun XG, Li WM, Li YW, Li RX, Huang Q, Lu WP. Development of a novel integrated isothermal amplification system for detection of bacteria-spiked blood samples. AMB Express 2023; 13:135. [PMID: 38019349 PMCID: PMC10686969 DOI: 10.1186/s13568-023-01643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Bloodstream infection (BSI) caused by bacteria is highly pathogenic and lethal, and easily develops whole-body inflammatory state. Immediate identification of disease-causing bacteria can improve patient prognosis. Traditional testing methods are not only time-consuming, but such tests are limited to laboratories. Recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) holds great promise for rapid nucleic acid detection, but the uncapping operation after amplification easily contaminates laboratories. Therefore, the establishment of a more effective integrated isothermal amplification system has become an urgent problem to be solved. In this study, we designed and fabricated a hermetically sealed integrated isothermal amplification system. Combining with this system, a set of RPA-LFD assays for detecting S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI were established and evaluated. The whole process could be completed in less than 15 min and the results can be visualized by the naked eye. The developed RPA-LFD assays displayed a good sensitivity, and no cross-reactivity was observed in seven similar bacterial genera. The results obtained with 60 clinical samples indicated that the developed RPA-LFD assays had high specifcity and sensitivity for identifying S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI. In conclusion, our results showed that the developed RPA-LFD assay is an alternative to existing PCR-based methods for detection of S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI in primary hospitals.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Min Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Yu-Wei Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China.
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China.
| |
Collapse
|
2
|
Dupuis AP, Lange RE, Ciota AT. Emerging tickborne viruses vectored by Amblyomma americanum (Ixodida: Ixodidae): Heartland and Bourbon viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1183-1196. [PMID: 37862097 DOI: 10.1093/jme/tjad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/21/2023]
Abstract
Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.
Collapse
Affiliation(s)
- Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Rachel E Lange
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
3
|
Varghese J, De Silva I, Millar DS. Latest Advances in Arbovirus Diagnostics. Microorganisms 2023; 11:1159. [PMID: 37317133 DOI: 10.3390/microorganisms11051159] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Arboviruses are a diverse family of vector-borne pathogens that include members of the Flaviviridae, Togaviridae, Phenuviridae, Peribunyaviridae, Reoviridae, Asfarviridae, Rhabdoviridae, Orthomyxoviridae and Poxviridae families. It is thought that new world arboviruses such as yellow fever virus emerged in the 16th century due to the slave trade from Africa to America. Severe disease-causing viruses in humans include Japanese encephalitis virus (JEV), yellow fever virus (YFV), dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), Crimean-Congo hemorrhagic fever virus (CCHFV), severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV). Numerous methods have been developed to detect the presence of these pathogens in clinical samples, including enzyme-linked immunosorbent assays (ELISAs), lateral flow assays (LFAs) and reverse transcriptase-polymerase chain reaction (RT-PCR). Most of these assays are performed in centralized laboratories due to the need for specialized equipment, such as PCR thermal cyclers and dedicated infrastructure. More recently, molecular methods have been developed which can be performed at a constant temperature, termed isothermal amplification, negating the need for expensive thermal cycling equipment. In most cases, isothermal amplification can now be carried out in as little as 5-20 min. These methods can potentially be used as inexpensive point of care (POC) tests and in-field deployable applications, thus decentralizing the molecular diagnosis of arboviral disease. This review focuses on the latest developments in isothermal amplification technology and detection techniques that have been applied to arboviral diagnostics and highlights future applications of these new technologies.
Collapse
Affiliation(s)
- Jano Varghese
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Imesh De Silva
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Douglas S Millar
- Genetic Signatures, 7 Eliza Street, Newtown, Sydney 2042, Australia
| |
Collapse
|