1
|
Chowdhury S, Sen A, Das D, Chakrabarti P. Deubiquitinase JOSD1 tempers hepatic proteotoxicity. Cell Death Discov 2024; 10:405. [PMID: 39284830 PMCID: PMC11405666 DOI: 10.1038/s41420-024-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Derangements in protein homeostasis and associated proteotoxicity mark acute, chronic, and drug-induced hepatocellular injury. Metabolic dysfunction-associated proteasomal inhibition and the use of proteasome inhibitors often underlie such pathological hepatic proteotoxicity. In this study, we sought to identify a candidate deubiquitinating enzyme (DUB) responsible for reversing the proteotoxic damage. To this end, we performed a siRNA screening wherein 96 DUBs were individually knocked down in HepG2 cells under proteasomal inhibitor-induced stress for dual readouts, apoptosis, and cell viability. Among the putative hits, we chose JOSD1, a member of the Machado-Josephin family of DUBs that reciprocally increased cell viability and decreased cell death under proteotoxicity. JOSD1-mediated mitigation of proteotoxicity was further validated in primary mouse hepatocytes by gain and loss of function studies. Marked plasma membrane accumulation of monoubiquitinated JOSD1 in proteotoxic conditions is a prerequisite for its protective role, while the enzymatically inactive JOSD1 C36A mutant was conversely polyubiquitinated, does not have membrane localisation and fails to reverse proteotoxicity. Mechanistically, JOSD1 physically interacts with the suppressor of cytokine signalling 1 (SOCS1), deubiquitinates it and enhances its stability under proteotoxic stress. Indeed, SOCS1 expression is necessary and sufficient for the hepatoprotective function of JOSD1 under proteasomal inhibition. In vivo, adenovirus-mediated ectopic expression or depletion of JOSD1 in mice liver respectively protects or aggravates hepatic injury when challenged with proteasome blocker Bortezomib. Our study thus unveils JOSD1 as a potential candidate for ameliorating hepatocellular damage in liver diseases.
Collapse
Affiliation(s)
- Saheli Chowdhury
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhishek Sen
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajyoti Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Medicine-Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Liu Y, Yang Y, Ni F, Tai G, Yu C, Jiang X, Wang D. Research on radiotherapy related genes and prognostic target identification of rectal cancer based on multi-omics. J Transl Med 2023; 21:856. [PMID: 38012642 PMCID: PMC10680259 DOI: 10.1186/s12967-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Radiosensitivity of rectal cancer is related to the radiotherapy efficacy and prognosis of patients with rectal cancer, and the genes and molecular mechanisms related to radiosensitivity of rectal cancer have not been clarified. We explored the radiosensitivity related genes of rectal cancer at a multi omics level. METHODS mRNA expression data and rectum adenocarcinoma (READ) data were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus Database (GEO) (GSE150082, GSE60331, GSE46862, GSE46862). Differentially expressed genes between radiotherapy sensitive group and radiotherapy insensitive group were screened. GO analysis and KEGG pathway analysis were performed for differentially expressed genes. Among the differentially expressed genes, five core genes associated with rectal cancer prognosis were selected using random survival forest analysis. For these five core genes, drug sensitivity analysis, immune cell infiltration analysis, TISIDB database immune gene correlation analysis, GSEA enrichment analysis, construction of Nomogram prediction model, transcriptional regulatory network analysis, and qRT-PCR validation was performed on human rectal adenocarcinoma tissue. RESULTS We found that 600 up-regulated genes and 553 down-regulated genes were significantly different between radiotherapy sensitive group and radiotherapy insensitive group in rectal cancer. Five key genes, TOP2A, MATR3, APOL6, JOSD1, and HOXC6, were finally screened by random survival forest analysis. These five key genes were associated with different immune cell infiltration, immune-related genes, and chemosensitivity. A comprehensive transcriptional regulatory network was constructed based on these five core genes. qRT-PCR revealed that MATR3 expression was different in rectal cancer tissues and adjacent non-cancerous tissues, while APOL6, HOXC6, JOSD1, and TOP2A expression was not different. CONCLUSION Five radiosensitivity-related genes related to the prognosis of rectal cancer: TOP2A, MATR3, APOL6, JOSD1, HOXC6, are involved in multiple processes such as immune cell infiltration, immune-related genes, chemosensitivity, signaling pathways and transcriptional regulatory networks and may be potential biomarkers for radiotherapy of rectal cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yanguang Yang
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Feng Ni
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guomei Tai
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Cenming Yu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
4
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Lockwood KC, Lear TB, Rajbhandari S, McKelvey AC, Dunn SR, Boudreau ÁN, Liu Y, Chen BB. KIAA0317 regulates SOCS1 stability to ameliorate colonic inflammation. FEBS J 2023; 290:3802-3811. [PMID: 36938956 PMCID: PMC10509311 DOI: 10.1111/febs.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway. Dysregulation of SOCS1 protein has been identified as a causal element in colonic inflammatory diseases. Despite this, it remains unclear how SOCS1 protein is regulated. Here, we identify that SOCS1 protein is targeted for degradation by the ubiquitin proteasome system, mediated by the E3 ubiquitin ligase KIAA0317 during experimental colonic inflammation. We characterize the mechanism of protein-protein interaction and ubiquitin conjugation to SOCS1 and demonstrate that the modulation of SOCS1 protein level leads to stark effects on JAK/STAT inflammatory signalling. Together, these results provide insight into the regulation of colonic inflammation through a new mechanism of ubiquitin-based control of SOCS1 protein.
Collapse
Affiliation(s)
- Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shristi Rajbhandari
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison C. McKelvey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah R. Dunn
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Áine N. Boudreau
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Huang S, Cui M, Huang J, Wu Z, Cheng A, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Tian B, Sun D, Yin Z, Jing B, Jia R. RNF123 Mediates Ubiquitination and Degradation of SOCS1 To Regulate Type I Interferon Production during Duck Tembusu Virus Infection. J Virol 2023; 97:e0009523. [PMID: 37014223 PMCID: PMC10134884 DOI: 10.1128/jvi.00095-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.
Collapse
Affiliation(s)
- Shanzhi Huang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Ziyu Wu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Duck Tembusu Virus Inhibits Type I Interferon Production through the JOSD1-SOCS1-IRF7 Negative-Feedback Regulation Pathway. J Virol 2022; 96:e0093022. [PMID: 36069544 PMCID: PMC9517709 DOI: 10.1128/jvi.00930-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.
Collapse
|
8
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
9
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Yang J, Weisberg EL, Liu X, Magin RS, Chan WC, Hu B, Schauer NJ, Zhang S, Lamberto I, Doherty L, Meng C, Sattler M, Cabal-Hierro L, Winer E, Stone R, Marto JA, Griffin JD, Buhrlage SJ. Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2. Leukemia 2021; 36:210-220. [PMID: 34326465 DOI: 10.1038/s41375-021-01336-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/30/2023]
Abstract
Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert S Magin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wai Cheung Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bin Hu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shengzhe Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ilaria Lamberto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura Doherty
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Jing C, Liu D, Lai Q, Li L, Zhou M, Ye B, Wu Y, Li H, Yue K, Wu Y, Duan Y, Wang X. JOSD1 promotes proliferation and chemoresistance of head and neck squamous cell carcinoma under the epigenetic regulation of BRD4. Cancer Cell Int 2021; 21:375. [PMID: 34261480 PMCID: PMC8278721 DOI: 10.1186/s12935-021-02060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan-Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. RESULTS The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. CONCLUSIONS These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.
Collapse
Affiliation(s)
- Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dandan Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Linqi Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mengqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
12
|
Abstract
Ubiquitination involves the covalent attachment of the protein ubiquitin to substrates. It can be reversed by the action of deubiquitinating enzymes (DUBs), thereby providing an important layer of regulation. Originally believed to be restricted to lysine residues, it is emerging that additional amino acids, including serine, threonine and cysteine, are also modified. It remains unknown which DUBs might target these unusual sites for deubiquitination. Herein, we develop representative model substrates and screen 53 DUBs for non-lysine activity, thereby providing important insights into DUB function. Strikingly, we find that a poorly studied DUB class has potent and highly selective serine/threonine activity. These findings suggest that non-lysine ubiquitination rivals the regulatory sophistication of its conventional counterpart and might serve distinct cellular functions. The reversibility of ubiquitination by the action of deubiquitinating enzymes (DUBs) serves as an important regulatory layer within the ubiquitin system. Approximately 100 DUBs are encoded by the human genome, and many have been implicated with pathologies, including neurodegeneration and cancer. Non-lysine ubiquitination is chemically distinct, and its physiological importance is emerging. Here, we couple chemically and chemoenzymatically synthesized ubiquitinated lysine and threonine model substrates to a mass spectrometry-based DUB assay. Using this platform, we profile two-thirds of known catalytically active DUBs for threonine esterase and lysine isopeptidase activity and find that most DUBs demonstrate dual selectivity. However, with two anomalous exceptions, the ovarian tumor domain DUB class demonstrates specific (iso)peptidase activity. Strikingly, we find the Machado–Joseph disease (MJD) class to be unappreciated non-lysine DUBs with highly specific ubiquitin esterase activity rivaling the efficiency of the most active isopeptidases. Esterase activity is dependent on the canonical catalytic triad, but proximal hydrophobic residues appear to be general determinants of non-lysine activity. Our findings also suggest that ubiquitin esters have appreciable cellular stability and that non-lysine ubiquitination is an integral component of the ubiquitin system. Its regulatory sophistication is likely to rival that of canonical ubiquitination.
Collapse
|
13
|
Butterfield NC, Curry KF, Steinberg J, Dewhurst H, Komla-Ebri D, Mannan NS, Adoum AT, Leitch VD, Logan JG, Waung JA, Ghirardello E, Southam L, Youlten SE, Wilkinson JM, McAninch EA, Vancollie VE, Kussy F, White JK, Lelliott CJ, Adams DJ, Jacques R, Bianco AC, Boyde A, Zeggini E, Croucher PI, Williams GR, Bassett JHD. Accelerating functional gene discovery in osteoarthritis. Nat Commun 2021; 12:467. [PMID: 33473114 PMCID: PMC7817695 DOI: 10.1038/s41467-020-20761-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.
Collapse
Affiliation(s)
- Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Katherine F Curry
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Cancer Council NSW, Sydney, NSW, 2000, Australia
| | - Hannah Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Naila S Mannan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anne-Tounsia Adoum
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julian A Waung
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Elena Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- Centre for Integrated Research into Musculoskeletal Ageing and Sheffield Healthy Lifespan Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | - Fiona Kussy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Richard Jacques
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Alan Boyde
- Dental Physical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter I Croucher
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
14
|
Jia P, Zhang W, Xiang Y, Lu X, Liu W, Jia K, Yi M. Ubiquitin-specific protease 5 was involved in the interferon response to RGNNV in sea perch (Lateolabrax japonicus). FISH & SHELLFISH IMMUNOLOGY 2020; 103:239-247. [PMID: 32437860 DOI: 10.1016/j.fsi.2020.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Deubiquitinases are widely involved in the regulation of the virus-triggered type I interferon (IFN) signaling. Here, we found sea perch (Lateolabrax japonicus) ubiquitin-specific protease 5 (LjUSP5) was a negative regulatory factor of the red-spotted grouper nervous necrosis virus (RGNNV)-triggered IFN response. LjUSP5 encoded a polypeptide of 830 amino acids, containing a zinc finger UBP domain (residues 197-270 aa), two ubiquitin-associated domains (residues 593-607 aa; 628-665 aa), and one UBP domain (residues 782-807 aa), and shared the closest genetic relationship with the USP5 of Larimichthys crocea. Quantitative RT-PCR analysis showed that LjUSP5 was ubiquitously expressed and up-regulated significantly in all inspected tissues post RGNNV infection, and its transcripts significantly increased in brain, liver and kidney tissues post RGNNV infection. LjUSP5 was up-regulated in cultured LJB cells after poly I:C and RGNNV treatments. In addition, overexpression of LjUSP5 significantly inhibited the activation of zebrafish IFN 1 promoter and promoted RGNNV replication in vitro. Furthermore, LjUSP5 inhibited the activation of zebrafish IFN 1 promoter induced by key genes of retinoic acid-inducible gene I-like receptors signaling pathway. Our findings provides useful information for further elucidating the mechanism underlying NNV infection.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| |
Collapse
|
15
|
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis 2020; 11:556. [PMID: 32699213 PMCID: PMC7376237 DOI: 10.1038/s41419-020-02760-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
MCL1 is an important antiapoptotic member of the BCL-2 family that is distinguishable from other family members based on its relatively short half-life. Emerging studies have revealed the crucial role of MCL1 in the chemoresistance of cancer cells. The antiapoptotic function of MCL1 makes it a popular therapeutic target, although specific inhibitors have begun to emerge only recently. Notably, emerging studies have reported that several E3 ligases and deubiquitinases modulate MCL1 stability, providing an alternate means of targeting MCL1 activity. In addition, the emergence and development of proteolysis-targeting chimeras, the function of which is based on ubiquitination-mediated degradation, has shown great potential. In this review, we provide an overview of the studies investigating the ubiquitination and deubiquitination of MCL1, summarize the latest evidence regarding the development of therapeutic strategies targeting MCL1 in cancer treatment, and discuss the promising future of targeting MCL1 via the ubiquitin–proteasome system in clinical practice.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
16
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
17
|
Yuan Y, Miao Y, Zeng C, Liu J, Chen X, Qian L, Wang X, Qian F, Yu Z, Wang J, Qian G, Fu Q, Lv H, Zheng H. Small-molecule inhibitors of ubiquitin-specific protease 7 enhance type-I interferon antiviral efficacy by destabilizing SOCS1. Immunology 2019; 159:309-321. [PMID: 31691271 DOI: 10.1111/imm.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type-I interferons (IFN-I) are used as common antiviral drugs for a range of viral diseases in clinic. However, the antiviral efficacy of IFN-I is largely restricted by negative regulators of IFN-I signaling in cells. Therefore, identification of intracellular inhibitors of IFN-I signaling is important for developing novel targets to improve IFN-I antiviral therapy. In this study, we report that the deubiquitinase ubiquitin-specific protease 7 (USP7) negatively regulates IFN-I-mediated antiviral activity. USP7 physically interacts with suppressor of cytokine signaling 1 (SOCS1) and enhances SOCS1 protein stability by deubiquitination effects, which in turn restricts IFN-I-induced activation of Janus kinase-signal transducer and activator of transcription 1 signaling. Interestingly, viral infection up-regulates USP7 and therefore facilitates viral immune evasion. Importantly, the USP7 small-molecule inhibitors P5091 and P22077 inhibit SOCS1 expression and enhance IFN-I antiviral efficacy. Our findings identify a novel regulator of IFN-I antiviral activity and reveal that USP7 inhibitors could be potential enhancement agents for improving IFN-I antiviral therapy.
Collapse
Affiliation(s)
- Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Chenhua Zeng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liping Qian
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiaofang Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Yu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Fu
- Soochow University Library, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Wang X, Mulas F, Yi W, Brunn A, Nishanth G, Just S, Waisman A, Brück W, Deckert M, Schlüter D. OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes. EMBO J 2019; 38:embj.2018100947. [PMID: 30944096 DOI: 10.15252/embj.2018100947] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/31/2023] Open
Abstract
Astrocytes are critical regulators of neuroinflammation in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Growing evidence indicates that ubiquitination of signaling molecules is an important cell-intrinsic mechanism governing astrocyte function during MS and EAE Here, we identified an upregulation of the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) in astrocytes during MS and EAE Mice with astrocyte-specific OTUB1 ablation developed more severe EAE due to increased leukocyte accumulation, proinflammatory gene transcription, and demyelination in the spinal cord as compared to control mice. OTUB1-deficient astrocytes were hyperactivated in response to IFN-γ, a fingerprint cytokine of encephalitogenic T cells, and produced more proinflammatory cytokines and chemokines than control astrocytes. Mechanistically, OTUB1 inhibited IFN-γ-induced Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling by K48 deubiquitination and stabilization of the JAK2 inhibitor suppressor of cytokine signaling 1 (SOCS1). Thus, astrocyte-specific OTUB1 is a critical inhibitor of neuroinflammation in CNS autoimmunity.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Floriana Mulas
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Wenjing Yi
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sissy Just
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Organ-specific Immune Regulation, Helmholtz-Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
20
|
Qian L, Zuo Y, Deng W, Miao Y, Liu J, Yuan Y, Guo T, Zhang L, Jin J, Wang J, Zheng H. MCPIP1 is a positive regulator of type I interferons antiviral activity. Biochem Biophys Res Commun 2018; 498:891-897. [PMID: 29545178 DOI: 10.1016/j.bbrc.2018.03.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022]
Abstract
Type-I interferons (IFN-I) are widely used for antiviral immunotherapy in clinic. Therefore, identification of the regulators of IFN-I antiviral activity is important for developing novel targets for IFN-based antiviral therapy. Monocyte chemoattractant protein 1-induced protein 1 (MCPIP1) is critical for cellular inflammatory responses. However, the roles of MCPIP1 in interferons (IFNs)-mediated antiviral immunity are unexplored. In this study, we demonstrate for the first time that MCPIP1 is an important positive regulator of IFNs antiviral activity. We found that MCPIP1 can promote innate antiviral immunity independently of both its RNase and deubiquitinase activity. Furthermore, we reveal that MCPIP1 is an IFN-induced positive feedback signal molecule which promotes IFN-I-mediated antiviral efficacy. Mechanistically, MCPIP1 does not affect the activation of JAK/STAT upstream of IFN-I signaling, but significantly promotes IFN-I signaling by enhancing ISRE promoter activity and expression of interferon-stimulated genes (ISGs). And MCPIP1-mediated activation of IFN-I signaling is independently of its RNase and deubiquitinase activity. These findings uncover a novel innate antiviral mechanism mediated by the IFN-MCPIP1 axis, and may provide potential targets for enhancing IFNs antiviral therapy.
Collapse
Affiliation(s)
- Liping Qian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Wenjun Deng
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Tingting Guo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Jun Jin
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215123, China.
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|