1
|
Tahmasebi E, Yazdanian A. The Effect of Collagen-Propolis-Eucalyptus Hydrogel in Wound Healing: An In Vivo Study (Rat Model). Vet Med Sci 2025; 11:e70225. [PMID: 39927901 PMCID: PMC11809206 DOI: 10.1002/vms3.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/13/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND A skin injury could cause serious damage, as it is the outermost layer. Treatment can heal superficial injuries perfectly, but deep wounds can barely heal it. A wound not treated correctly can lead to severe health problems and even death. AIM This study aims to investigate the role of collagen-propolis-eucalyptus hydrogel in wound healing in rats. METHODS AND MATERIALS Collagen solution was prepared, and then the extract of propolis and eucalyptus was prepared. Four groups (collagen-propolis-eucalyptus, collagen-eucalyptus, collagen-propolis hydrogels and control groups) were prepared, and their biocompatibility was evaluated by the MTT test assay; Then the anti-bacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. The animal test was investigated during 7, 14 and 21 days by histopathology. RESULTS The MTT test did not show significant cell cytotoxicity, and the percentage of cell survival was more than 90% for 24, 48 and 72 h. The effect of the anti-bacterial hydrogel collagen-propolis-eucalyptus group compared to the collagen-eucalyptus and collagen-propolis groups was much higher. The percentage of wound contraction was recorded in the collagen-propolis-eucalyptus group and it increased in all the groups over time. The results showed that the percentage of wound contraction and repair was significant in the macroscopic and microscopic evaluations. CONCLUSION The results showed the effectiveness of natural hydrogel in increasing the healing process of the wound, and it is possible to use this hydrogel natural collagen-eucalyptus-propolis as a suitable option because of its accessibility and low cost.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- School of DentistryBaqiyatallah University of Medical SciencesTehranIran
- Research Center for Prevention of Oral and Dental DiseasesBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Yazdanian
- Department of Veterinary SurgeryScience and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
de Souza A, Amaral GO, do Espirito Santo G, Dos Santos Jorge Sousa K, Martignago CCS, Souza E Silva LC, de Lima LE, Vitor de Souza D, Cruz MA, Ribeiro DA, Granito RN, Renno ACM. 3D printed skin dressings manufactured with spongin-like collagen from marine sponges: physicochemical properties and in vitrobiological analysis. Biomed Mater 2025; 20:025016. [PMID: 39842086 DOI: 10.1088/1748-605x/adad29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
The search for innovative materials for manufacturing skin dressings is constant and high demand. In this context, the present study investigated the effects of a 3D printed skin dressing made of spongin-like collagen (SC) extract from marine sponge (Chondrilla caribensis), used in 3 concentrations of SC and alginate (C1, C2, C3). For this proposal, the physicochemical, morphological andin vitrobiological results were investigated. The results demonstrated that, after immersion, C2 presented a higher mass loss and C3 present a higher pH in experimental periods. Also, a higher porosity was observed for C1 and C2 skin dressings, with a higher swelling ratio for C2. For Fourier transform infrared, peaks of Amide A, -CH2, -COOH and C-O-C were seen. Moreover, the macroscopic image demonstrated a skin dressing with rough surface and grayish color that is naturally observed inChondrilla caribensis. For scanning electron microscopy analysis the presence of pores could be observed for all skin dressings, with fibers disposed in layers. Thein vitroanalyses demonstrated the viability of HFF-1 and L929 cell lines 70% of the values found for cell proliferation compared to Control Group. Furthermore, the cell adhesion analysis demonstrated that both cell lines adhered to the 3 different skin dressings and non-cytotoxicity was observed. Taking together, all the results suggest that the skin dressings are biocompatible and present non-cytotoxicity in thein vitrostudies, being considered a suitable material for tissue engineering proposals.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | | | | | - Lais Caroline Souza E Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Daniel Vitor de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020 Santos, SP, Brazil
| |
Collapse
|
3
|
Dos Santos Jorge Sousa K, de Souza A, de Lima LE, Erbereli R, de Araújo Silva J, de Almeida Cruz M, Martignago CCS, Ribeiro DA, Barcellos GRM, Granito RN, Renno ACM. Flounder fish (Paralichthys sp.) collagen a new tissue regeneration: genotoxicity, cytotoxicity and physical-chemistry characterization. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02884-3. [PMID: 37199771 DOI: 10.1007/s00449-023-02884-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Collagen dressings have been widely used as effective treatments for chronic wounds acting as barrier, protecting the area from infections and participating in the healing process. Collagen from fish skin is biocompatible, presents low immunogenicity and is able of stimulating wound healing. In this scenario, skin of flounder fish (Paralichthys sp.) may constitute a promising source for collagen. Then, our hypothesis is that fish collagen is able of increasing cell proliferation, with no cytotoxicity. In this context, the aim of the present study was to investigate the physicochemical and morphological properties of collagen using scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), mass loss and pH. Moreover, the cytotoxicity and genotoxicity of collagen were studied using in vitro studies (cell viability, comet assay and micronucleus assay). Fish collagen showed no variation of pH and mass weight, with characteristic peaks of collagen in FTIR. Furthermore, all the extracts presented cell viability at least over 50% and no cytotoxicity was observed. Regarding genotoxicity data, the results showed that only the extract of 100% showed higher values in comparison with negative control group for CHO-K1 cell line as depicted by comet and micronucleus assays. Based on the results, it is suggested that fish collagen is biocompatible and present non-cytotoxicity in the in vitro studies, being considered a suitable material for tissue engineering proposals.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Rogério Erbereli
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, São Carlos, SP, 13566-590, Brazil
| | - Jonas de Araújo Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Cintia Cristina Santi Martignago
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Gustavo Rafael Mazzaron Barcellos
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP, 11015020, Brazil
| |
Collapse
|
4
|
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, Zhao J, Li Y, Guo W, Liu T, Qu W. Recent advances in biomimetic hemostatic materials. Mater Today Bio 2023; 19:100592. [PMID: 36936399 PMCID: PMC10020683 DOI: 10.1016/j.mtbio.2023.100592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.
Collapse
Affiliation(s)
- Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, PR China
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, PR China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| |
Collapse
|
5
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
Sumiyoshi H, Okamura Y, Kawaguchi AT, Kubota T, Endo H, Yanagawa T, Yasuda J, Matsuki Y, Nakao S, Inagaki Y. External administration of moon jellyfish collagen solution accelerates physiological wound healing and improves delayed wound closure in diabetic model mice. Regen Ther 2021; 18:223-230. [PMID: 34377752 PMCID: PMC8319749 DOI: 10.1016/j.reth.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Artificial dermis is an effective therapeutic method for full-thickness dermal defects. However, the currently available artificial dermis made of porcine or bovine type I collagen has several limitations such as incomplete epithelialization and delayed migration of fibrogenic and angiogenic cells into the graft. We previously developed a composite dermal graft containing a mixture of moon jellyfish collagen and porcine type I collagen, and reported its stimulatory effect on both the re-epithelialization of the epidermis and the migration of fibrogenic and angiogenic cells into the graft. In the present study, we examined whether the same effect was observed by administering jellyfish collagen solution externally onto an artificial dermal graft made of bovine type I collagen. Methods We used a 6 mm full-thickness wound defect model. Moon jellyfish collagen was prepared as a concentrated 0.5% solution and dripped externally onto a transplanted artificial dermal graft made of bovine type I collagen. Wound repair and long-term dermal tissue remodeling were compared between mice administered jellyfish collagen solution on the bovine collagen graft and those transplanted with a composite dermal graft containing the same amounts of jellyfish and bovine collagens. The stimulatory effect of jellyfish collagen solution was also evaluated using diabetic dB/dB mice. Results External administration of jellyfish collagen solution onto the bovine collagen graft significantly accelerated wound closure compared to control saline. It also decreased the number of inflammatory cells infiltrating the wound and suppressed absorption of the transplanted graft, as well as reduced subsequent scar formation. Furthermore, external administration of jellyfish collagen solution onto the bovine collagen graft improved the delayed wound healing in diabetic model mice, and this effect was superior to that of the currently used basic fibroblast growth factor. Conclusions External administration of moon jellyfish collagen solution onto a bovine collagen graft significantly accelerated physiological wound healing and prevented excessive scar formation. It also improved wound closure in diabetic model mice, confirming its therapeutic application for intractable skin ulcers caused by impaired wound healing. Impaired wound healing is frequently observed in elderly and diabetic patients. Moon jellyfish collagen accelerates wound closure after full-thickness dermal defect in mice. Jellyfish collagen used as an external medicine stimulates the elongation of regenerating epithelial cells. Externally applied jellyfish collagen improves wound healing in diabetic model mice.
Collapse
Affiliation(s)
- Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Japan
| | - Akira T Kawaguchi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Tomoko Kubota
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Endo
- Department of Preventive Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takayo Yanagawa
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Junpei Yasuda
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yuki Matsuki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|