1
|
Peng Y, Sheng J, Liu T, He R, Xu P. Identifying key targets and immune environment in wound healing based on iron overload-related genes. Arch Dermatol Res 2025; 317:719. [PMID: 40252113 DOI: 10.1007/s00403-025-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 04/21/2025]
Abstract
Wound healing (WH) poses a significant socio-economic burden due to its high incidence and recurrence rates. Iron overload (IO) could be a factor leading to delayed WH. This study thus analyzed IO-related genes (IORGs) in WH, offering possibilities for developing new therapeutic strategies. Differential gene expression (DEGs) analysis was conducted between the WH group and intact skin (IS) group, intersected with IORGs to obtain differentially expressed IORGs (DE-IORGs). Functional enrichment analysis and potential drug screening were performed on DE-IORGs. A protein-protein interaction (PPI) network of DE-IORGs was constructed, and hub genes were identified using CytoHubba and MCODE methods. ROC curves of hub genes were plotted, and their expression levels in WH and IS groups as well as inter-gene correlations were analyzed. Additionally, immune infiltration variances in WH and IS groups, along with miRNA and TFs of hub genes, were examined. Finally, the effect of EGFR on skin wound healing was verified by scratch healing assay. 39 DE-IORGs were predominantly enriched in signaling pathways like HIF-1 signaling pathway and Th17 cell differentiation. Potential drugs for treating WH (e.g., felbamate, SA-94315, GANT-58, rucaparib) were identified. Three hub genes related to IO in WH were pinpointed (HIF1A, CDKN2A, EGFR) with diagnostic value. Immune infiltration analysis showed higher levels of immune cells like endothelial cells and macrophages in the WH group. Additionally, 55 miRNAs (e.g., hsa-mir-200a-3p, hsa-mir-218-5p) and 2 TFs (L3MBTL2, ZNF76) regulating the three hub genes were predicted. Cell experiments showed that EGFR could promote skin wound healing. The study suggested HIF1A, CDKN2A, and EGFR as potential diagnostic biomarkers for effective WH diagnosis, offering new insights into identifying potenti1al therapeutic targets for WH treatment.
Collapse
Affiliation(s)
- Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Juxiang Sheng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Tiantian Liu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Ruizhe He
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China
| | - Peng Xu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.
- Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.
- Institute of Traumatic Medicine of Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201900, China.
| |
Collapse
|
2
|
DeStefano S, Fertil D, Faust M, Sadtler K. Basic immunologic study as a foundation for engineered therapeutic development. Pharmacol Res Perspect 2024; 12:e1168. [PMID: 38894611 PMCID: PMC11187943 DOI: 10.1002/prp2.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 06/21/2024] Open
Abstract
Bioengineering and drug delivery technologies play an important role in bridging the gap between basic scientific discovery and clinical application of therapeutics. To identify the optimal treatment, the most critical stage is to diagnose the problem. Often these two may occur simultaneously or in parallel, but in this review, we focus on bottom-up approaches in understanding basic immunologic phenomena to develop targeted therapeutics. This can be observed in several fields; here, we will focus on one of the original immunotherapy targets-cancer-and one of the more recent targets-regenerative medicine. By understanding how our immune system responds in processes such as malignancies, wound healing, and medical device implantation, we can isolate therapeutic targets for pharmacologic and bioengineered interventions.
Collapse
Affiliation(s)
- Sabrina DeStefano
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Daphna Fertil
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Mondreakest Faust
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Chang C, Tang X, Schönthal AH, Chen M, Woodley DT, Wang Y, Liang C, Li W. Discovery of Cell Number-Interstitial Fluid Volume (CIF) Ratio Reveals Secretory Autophagy Pathway to Supply eHsp90α for Wound Healing. Cells 2024; 13:1280. [PMID: 39120311 PMCID: PMC11312289 DOI: 10.3390/cells13151280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Cell secretion repairs tissue damage and restores homeostasis throughout adult life. The extracellular heat shock protein-90alpha (eHsp90α) has been reported as an exosome cargo and a potential driver of wound healing. However, neither the mechanism of secretion nor the genetic evidence for eHsp90α in wound healing has been substantiated. Herein, we show that tissue injury causes massive deposition of eHsp90α in tissues and secretion of eHsp90α by cells. Sequential centrifugations of conditioned medium from relevant cell lines revealed the relative distributions of eHsp90α in microvesicle, exosome and trypsin-sensitive supernatant fractions to be approximately <2%, <4% and >95%, respectively. Establishing the cell-number-to-interstitial-fluid-volume (CIF) ratio for the microenvironment of human tissues as 1 × 109 cells: 1 mL interstitial fluid enabled us to predict the corresponding tissue concentrations of eHsp90α in these fractions as 3.74 μg/mL, 5.61 μg/mL and 178 μg/mL. Remarkably, the 178 μg/mL eHsp90α matches the previously reported 100-300 μg/mL of recombinant eHsp90α whose topical application promotes maximum wound healing in animal models. More importantly, we demonstrate that two parallel secretory autophagy-regulating gene families, the autophagy-regulating (AR) genes and the Golgi reassembly-stacking protein (GRASP) genes work together to mediate the secretion of the physiological concentration of eHsp90α to promote wound healing. Thus, utilization of the CIF ratio-based extrapolation method may enable investigators to rapidly predict biomarker targets from cell-conditioned-medium data.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, Los Angeles, CA 90089, USA; (C.C.); (X.T.); (M.C.); (D.T.W.)
| | - Xin Tang
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, Los Angeles, CA 90089, USA; (C.C.); (X.T.); (M.C.); (D.T.W.)
| | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, University of Southern California Keck Medical Centre, Los Angeles, CA 90033, USA;
| | - Mei Chen
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, Los Angeles, CA 90089, USA; (C.C.); (X.T.); (M.C.); (D.T.W.)
| | - David T. Woodley
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, Los Angeles, CA 90089, USA; (C.C.); (X.T.); (M.C.); (D.T.W.)
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA;
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
| | - Wei Li
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, Los Angeles, CA 90089, USA; (C.C.); (X.T.); (M.C.); (D.T.W.)
| |
Collapse
|
4
|
Cui K, Gong S, Bai J, Xue L, Li X, Wang X. Exploring the impact of TGF-β family gene mutations and expression on skin wound healing and tissue repair. Int Wound J 2024; 21:e14596. [PMID: 38151761 PMCID: PMC10961875 DOI: 10.1111/iwj.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Transforming Growth Factor-Beta (TGF-β) signalling pathway is of paramount importance in the processes of wound healing, epidermal integrity maintenance and development of skin cancer. The objective of this research endeavour was to clarify the impact of gene mutations and variations in expression within TGF-β family on mechanisms of tissue repair, as well as to identify potential targets for therapeutic purposes in non-melanoma skin cancer (NMSC). The methods utilized in this study involved obtaining RNA-seq data from 224 NMSC patients and paired normal skin tissues from the PRJNA320473 and PRJEB27606 databases. The purpose of the differential gene expression analysis was to identify genes whose expression had changed significantly. In order to evaluate the effects and interrelationships of identified gene variants, structural analysis with AlphaFold and PDB data and network analysis with the STRING database were both utilized. Critical gene expression was externally validated through the utilization of the GEPIA database. Tumour tissues exhibited a notable upregulation of genes associated with the TGF-β pathway, specifically MMP1, MMP3, MMP9, EGF, COL3A1 and COL1A2, in comparison with normal tissues. As indicated by the central node status of these genes in the network analysis, they play a crucial role in the progression of NMSCs. The results of the structural analysis suggested that mutations might cause functional disruptions. External validation of the upregulation confirmed the expression trends and emphasized the biomarker potential of the upregulated genes. In conclusion, this research offered thorough examination of molecular modifications that occur in TGF-β family genes, which are linked to cutaneous wound healing and NMSC. The modified expression of the identified hub genes may represent innovative targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kai Cui
- Thoracic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Sunxin Gong
- Thoracic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Junfeng Bai
- Thoracic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Liangliang Xue
- Thoracic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Xue Li
- Thoracic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Xiaodong Wang
- Thoracic Surgery DepartmentSecond Affiliated Hospital of Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
5
|
Shi R, Qiao J, Sun Q, Hou B, Li B, Zheng J, Zhang Z, Peng Z, Zhou J, Shen B, Deng J, Zhang X. Self-assembly of PEG-PPS polymers and LL-37 peptide nanomicelles improves the oxidative microenvironment and promotes angiogenesis to facilitate chronic wound healing. Bioeng Transl Med 2024; 9:e10619. [PMID: 38435813 PMCID: PMC10905545 DOI: 10.1002/btm2.10619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/05/2024] Open
Abstract
Refractory diabetic wounds are associated with high incidence, mortality, and recurrence rates and are a devastating and rapidly growing clinical problem. However, treating these wounds is difficult owing to uncontrolled inflammatory microenvironments and defective angiogenesis in the affected areas, with no established effective treatment to the best of our knowledge. Herein, we optimized a dual functional therapeutic agent based on the assembly of LL-37 peptides and diblock copolymer poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS). The incorporation of PEG-PPS enabled responsive or controlled LL-37 peptide release in the presence of reactive oxygen species (ROS). LL-37@PEG-PPS nanomicelles not only scavenged excessive ROS to improve the microenvironment for angiogenesis but also released LL-37 peptides and protected them from degradation, thereby robustly increasing angiogenesis. Diabetic wounds treated with LL-37@PEG-PPS exhibited accelerated and high-quality wound healing in vivo. This study shows that LL-37@PEG-PPS can restore beneficial angiogenesis in the wound microenvironment by continuously providing angiogenesis-promoting signals. Thus, it may be a promising drug for improving chronic refractory wound healing.
Collapse
Affiliation(s)
- Rong Shi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
- Department of Breast SurgeryGansu Provincial HospitalLanzhouGansuChina
| | - Jianxiong Qiao
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Quanwu Sun
- Department of Breast SurgeryGansu Provincial HospitalLanzhouGansuChina
| | - Biao Hou
- Department of Joint Surgery and Sports MedicineCenter for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Bo Li
- Department of Joint Surgery and Sports MedicineCenter for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ji Zheng
- Department of UrologyXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Zhenzhen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Zhenxue Peng
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Jing Zhou
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Bingbing Shen
- Department of NephrologyChongqing University Central Hospital, Chongqing Emergency Medical CenterChongqingChina
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease ProteomicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xuanfen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
6
|
Chen M, Chang C, Levian B, Woodley DT, Li W. Why Are There So Few FDA-Approved Therapeutics for Wound Healing? Int J Mol Sci 2023; 24:15109. [PMID: 37894789 PMCID: PMC10606455 DOI: 10.3390/ijms242015109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Since the only and the milestone FDA approval of becaplermin gel (RegranexTM, 0.01% human recombinant PDGF-BB) as a (diabetic) wound healing therapeutic more than 25 years ago, no new therapeutic (excluding physical therapies, devices, dressings, anti-microbial agents, or other preventive treatments) for any type of wound healing has advanced to clinical applications. During the same period of time, the FDA has approved additional 250 new drugs for various human tumors, which were famously described as "wounds that do not heal". Two similar pathological conditions have experienced such a dramatic difference in therapeutics. More surprisingly, few in the wound healing community seem to be alarmed by this mysterious deficit. As it is often said, "damaging is far easier than re-building". In contrast to the primary duty of a cancer drug to damage a single molecule of the signaling network, a wound healing drug must be able to re-build the multi-level damages in the wound. No known single molecule alone is capable of repairing multi-cell-type and multi-pathway damages all at once. We argue that the previous single molecule-based strategy for developing wound healing therapeutics is profoundly flawed in theory. The future success of effective wound healing therapeutics requires a fundamental change in the paradigm.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology, USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA; (M.C.); (B.L.)
| |
Collapse
|
7
|
Barden M, Anagnostopoulos A, Griffiths BE, Li B, Bedford C, Watson C, Psifidi A, Banos G, Oikonomou G. Genetic parameters of sole lesion recovery in Holstein cows. J Dairy Sci 2023; 106:1874-1888. [PMID: 36710182 PMCID: PMC9947741 DOI: 10.3168/jds.2022-22064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/29/2023]
Abstract
Sole hemorrhage and sole ulcers, referred to as sole lesions, are important causes of lameness in dairy cattle. The objective of this study was to estimate the genetic parameters of a novel trait reflecting how well cows recovered from sole lesions and the genetic correlation of this trait with overall susceptibility to sole lesions. A cohort of Holstein dairy cows was prospectively enrolled on 4 farms and assessed at 4 timepoints: before calving, immediately after calving, in early lactation, and in late lactation. At each timepoint, sole lesions were recorded at the claw level by veterinary surgeons and used to define 2 binary traits: (1) susceptibility to sole lesions-whether animals were affected with sole lesions at least once during the study or were unaffected at every assessment, and (2) sole lesion recovery-whether sole lesions healed between early and late lactation. Animals were genotyped and pedigree details extracted from the national database. Analyses were conducted with BLUPF90 software in a single-step framework; genetic parameters were estimated from animal threshold models using Gibbs sampling. The genetic correlation between both traits was approximated as the correlation between genomic estimated breeding values, adjusting for their reliabilities. A total of 2,025 animals were used to estimate the genetic parameters of sole lesion susceptibility; 44% of animals recorded a sole lesion at least once during the study period. The heritability of sole lesion susceptibility, on the liability scale, was 0.25 (95% highest density interval = 0.16-0.34). A total of 498 animals were used to estimate the genetic parameters of sole lesion recovery; 71% of animals had recovered between the early and late lactation assessments. The heritability of sole lesion recovery, on the liability scale, was 0.27 (95% highest density interval = 0.02-0.52). The approximate genetic correlation between each trait was -0.11 (95% confidence interval = -0.20 to -0.02). Our results indicate that recovery from sole lesions is heritable. If this finding is corroborated in further studies, it may be possible to use selective breeding to reduce the frequency of chronically lame cows. As sole lesion recovery appears to be weakly genetically related to sole lesion susceptibility, successful genetic improvement of sole lesion recovery would benefit from selection on this trait directly.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bethany E. Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Bingjie Li
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Cherry Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Chris Watson
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Georgios Banos
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom.
| |
Collapse
|
8
|
D'Arpa P, Leung KP. Pharmaceutical Prophylaxis of Scarring with Emphasis on Burns: A Review of Preclinical and Clinical Studies. Adv Wound Care (New Rochelle) 2022; 11:428-442. [PMID: 33625898 PMCID: PMC9142134 DOI: 10.1089/wound.2020.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The worldwide estimate of burns requiring medical attention each year is 11 million. Each year in the United States, ∼486,000 burn injuries receive medical attention, including 40,000 hospitalizations. Scars resulting from burns can be disfiguring and impair functions. The development of prophylactic drugs for cutaneous scarring could improve the outcomes for burns, traumatic lacerations (>6 million/year treated in U.S. emergency rooms), and surgical incisions (∼250 million/year worldwide). Antiscar pharmaceuticals have been estimated to have a market of $12 billion. Recent Advances: Many small molecules, cells, proteins/polypeptides, and nucleic acids have mitigated scarring in animal studies and clinical trials, but none have received Food and Drug Administration (FDA) approval yet. Critical Issues: The development of antiscar pharmaceuticals involves the identification of the proper dose, frequency of application, and window of administration postwounding for the indicated wound. Risks of infection and impaired healing must be considered. Scar outcome needs to be evaluated after scars have matured. Future Directions: Once treatments have demonstrated safety and efficacy in rodent and/or rabbit and porcine wound models, human testing can begin, such as on artificially created wounds on healthy subjects and on bilateral-surgical wounds, comparing treatments versus vehicle controls on intrapatient-matched wounds, before testing on separate cohorts of patients. Given the progress made in the past 20 years, FDA-approved drugs for improving scar outcomes may be expected.
Collapse
Affiliation(s)
- Peter D'Arpa
- The Geneva Foundation, Tacoma, Washington, USA.,Correspondence: 15104 DuFief Dr, North Potomac, MD 20878, USA.
| | - Kai P. Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Correspondence: Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3650 Chambers Pass, Building 3611, Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
9
|
Li G, Li D, Wu C, Li S, Chen F, Li P, Ko CN, Wang W, Lee SMY, Lin L, Ma DL, Leung CH. Homocysteine-targeting compounds as a new treatment strategy for diabetic wounds via inhibition of the histone methyltransferase SET7/9. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:988-998. [PMID: 35859119 PMCID: PMC9356058 DOI: 10.1038/s12276-022-00804-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
In hypoxia and hyperglycemia, SET7/9 plays an important role in controlling HIF-1α methylation and regulating the transcription of HIF-1α target genes, which are responsible for angiogenesis and wound healing. Here, we report the Ir(III) complex Set7_1a bearing acetonitrile (ACN) ligands as a SET7/9 methyltransferase inhibitor and HIF-1α stabilizer. Interestingly, Set7_1a could engage SET7/9 and strongly inhibit SET7/9 activity, especially after preincubation with homocysteine (Hcy), which is elevated in diabetes. We hypothesize that Set7_1a exchanges ACN subunits for Hcy to disrupt the interaction between SET7/9 and SAM/SAH, which are structurally related to Hcy. Inhibition of SET7/9 methyltransferase activity by Set7_1a led to reduced HIF-1α methylation at the lysine 32 residue, causing increased HIF-1α level and recruitment of HIF-1α target genes that promote angiogenesis, such as VEGF, GLUT1, and EPO, in hypoxia and hyperglycemia. Significantly, Set7_1a improved wound healing in a type 2 diabetic mouse model by activating HIF-1α signaling and downstream proangiogenic factors. To our knowledge, this is the first Hcy-targeting iridium compound shown to be a SET7/9 antagonist that can accelerate diabetic wound healing. More importantly, this study opens a therapeutic avenue for the treatment of diabetic wounds by the inhibition of SET7/9 lysine methyltransferase activity. Animal trials have demonstrated the potential of a new drug strategy to heal the wounds associated with diabetes, especially in the feet,which often lead to chronic damage, sometimes treatable only by amputation. Leung CH and Lin L at the University of Macau, China, and Ma DL at the Hong Kong Baptist University tested the new therapy on a mouse model of type 2 diabetes. The treatment uses a homocysteine-targeting metal complex that inhibits a key enzyme SET7/9 involved in the processes that cause diabetic wounds. The treatment activated a molecular signalling cascade involved in generating the new blood vessels needed for wounds to heal. It could help address the urgent need for better treatments for this serious problem.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shengnan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
10
|
Evaluation of Acellular Dermal Matrix (ADM) as a Scaf-fold for Adipose-Derived Stem Cell Transfer in the Rat Model. World J Plast Surg 2021. [DOI: 10.52547/wjps.10.2.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|