1
|
Sofyantoro F, Septriani NI, Yudha DS, Wicaksono EA, Priyono DS, Putri WA, Primahesa A, Raharjeng ARP, Purwestri YA, Nuringtyas TR. Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. Zebrafish 2024; 21:231-242. [PMID: 38608228 DOI: 10.1089/zeb.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Animal venoms and toxins hold promise as sources of novel drug candidates, therapeutic agents, and biomolecules. To fully harness their potential, it is crucial to develop reliable testing methods that provide a comprehensive understanding of their effects and mechanisms of action. However, traditional rodent assays encounter difficulties in mimicking venom-induced effects in human due to the impractical venom dosage levels. The search for reliable testing methods has led to the emergence of zebrafish (Danio rerio) as a versatile model organism for evaluating animal venoms and toxins. Zebrafish possess genetic similarities to humans, rapid development, transparency, and amenability to high-throughput assays, making it ideal for assessing the effects of animal venoms and toxins. This review highlights unique attributes of zebrafish and explores their applications in studying venom- and toxin-induced effects from various species, including snakes, jellyfish, cuttlefish, anemones, spiders, and cone snails. Through zebrafish-based research, intricate physiological responses, developmental alterations, and potential therapeutic interventions induced by venoms are revealed. Novel techniques such as CRISPR/Cas9 gene editing, optogenetics, and high-throughput screening hold great promise for advancing venom research. As zebrafish-based insights converge with findings from other models, the comprehensive understanding of venom-induced effects continues to expand, guiding the development of targeted interventions and promoting both scientific knowledge and practical applications.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Ega Adhi Wicaksono
- Faculties of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Alfian Primahesa
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anita Restu Puji Raharjeng
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Science and Technology, Universitas Islam Negeri Raden Fatah Palembang, South Sumatera, Indonesia
| | - Yekti Asih Purwestri
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Rini Nuringtyas
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Satpathy L, Parida SP. Study on the Effects of Kandhamal Haladi in Benzo [a]Pyrene-Induced Behavioral Changes in Adult Zebrafish ( Danio rerio). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Laxminandan Satpathy
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Siba Prasad Parida
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Zhu L, Li HD, Xu JJ, Li JJ, Cheng M, Meng XM, Huang C, Li J. Advancements in the Alcohol-Associated Liver Disease Model. Biomolecules 2022; 12:biom12081035. [PMID: 36008929 PMCID: PMC9406170 DOI: 10.3390/biom12081035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spectrum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment strategies are urgently required for ALD patients. In previous decades, numerous rodent models were established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic targets. This review provides a summary of the latest developments in rodent models, including those that involve EtOH administration, which will help us to understand the characteristics and causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize the existing in vitro models. We analyse the pros and cons of these models and their translational relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Ming Meng
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Cheng Huang
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Jun Li
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| |
Collapse
|
4
|
Duan XY, Ma RJ, Hsiao CD, Jiang ZZ, Zhang LY, Zhang Y, Liu KC. Tripterygium wilfordii multiglycoside-induced hepatotoxicity via inflammation and apoptosis in zebrafish. Chin J Nat Med 2021; 19:750-757. [PMID: 34688465 DOI: 10.1016/s1875-5364(21)60078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/12/2022]
Abstract
Tripterygium wilfordii multiglycoside (GTW) is a commonly used compound for the treatment of rheumatoid arthritis (RA) and immune diseases in clinical practice. However, it can induce liver injury and the mechanism of hepatotoxicity is still not clear. This study was designed to investigate GTW-induced hepatotoxicity in zebrafish larvae and explore the mechanism involved. The 72 hpf (hours post fertilization) zebrafish larvae were administered with different concentrations of GTW for three days and their mortality, malformation rate, morphological changes in the liver, transaminase levels, and histopathological changes in the liver of zebrafish larvae were detected. The reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the levels of microRNA-122 (miR-122) and genes related to inflammation, apoptosis, cell proliferation and liver function. The results showed that GTW increased the mortality of zebrafish larvae, while significant malformations and liver damage occurred. The main manifestations were elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), significant liver atrophy, vacuoles in liver tissue, sparse cytoplasm, and unclear hepatocyte contours. RT-PCR results showed that the expression of miR-122 significantly decreased by GTW; the mRNA levels of inflammation-related genes il1β, il6, tnfα, il10, cox2 and ptges significantly increased; the mRNA level of tgfβ significantly decreased; the mRNA levels of apoptosis-related genes, caspase-8 and caspase-9, significantly increased; the mRNA level of bcl2 significantly decreased; the mRNA levels of cell proliferation-related genes, top2α and uhrf1, significantly reduced; the mRNA levels of liver function-related genes, alr and cyp3c1, significantly increased; and the mRNA level of cyp3a65 significantly decreased. In zebrafish, GTW can cause increased inflammation, enhanced apoptosis, decreased cell proliferation, and abnormal expression of liver function-related genes, leading to abnormal liver structure and function and resulting in hepatotoxicity.
Collapse
Affiliation(s)
- Xiu-Ying Duan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Rui-Jiao Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32023, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China.
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
5
|
Liu P, Zhao Y, Wang S, Xing H, Dong WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103720. [PMID: 34332080 DOI: 10.1016/j.etap.2021.103720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Silica nanoparticles (SiNPs) and cadmium chloride (CdCl2) are two important environmental pollutants. In previous research, found that SiNPs in zebrafish larvae can amplify the cardiovascular damage caused by cadmium. Whether SiNPs in the ovaries can amplify the adverse effects of cadmium on the zebrafish ovaries is worth studying problem. In this study, sexually mature female zebrafish were used as model organisms and exposed to 1 μmol/L CdCl2 and/or 25 μg/mL SiNPs for 30 days. The results showed that the structure and function of ovaries in the sole and combined exposure groups changed significantly, resulting in reduced ovarian quality, decreased number of mature oocytes, and the development of malformed offspring. A deep-sequencing analysis showed that organisms' lipid metabolism and transportation, estrogen metabolism, and response to the maturation, meiosis, and vitellogenin synthesis of oocytes were significantly affected by single exposure or combined exposure. These findings provide further insights into the harm of cooperation of CdCl2 and/or SiNPs to the aquatic ecosystems.
Collapse
Affiliation(s)
- Pai Liu
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Yeming Zhao
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Sheng Wang
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Hao Xing
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Wen-Fei Dong
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
6
|
Audira G, Lai YH, Huang JC, Chen KHC, Hsiao CD. Phenomics Approach to Investigate Behavioral Toxicity of Environmental or Occupational Toxicants in Adult Zebrafish (Danio rerio). Curr Protoc 2021; 1:e223. [PMID: 34387947 DOI: 10.1002/cpz1.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last few years, environmental pollution, especially water pollution, has become a serious issue worldwide. Thus, methods that can help us understand the impact and effects of these pollutants, especially on aquatic animals, are needed. Behavioral assessment has emerged as a crucial tool in toxicology and pharmacology because many studies have shown, in multiple animal models, that various pharmacological compounds can alter behavior, with many of the findings being translatable to humans. Moreover, behavior study can also be used as a suitable indicator in the ecotoxicological risk assessment of pollutants. Several model organisms, especially rodent models, have been extensively employed for behavior studies. However, assessments using this model are generally time consuming, expensive, and require extensive facilities for housing experimental animals. Moreover, behavioral studies typically use different measurements and assessment tools, making comparisons difficult. In addition, even though behavioral phenomics has the potential to comprehensively illustrate the toxicities of chemicals, there is only a limited number of studies focusing on animal behavior using such a global approach. Here, we describe a phenomics approach that can be used to investigate the impact of pollutants using zebrafish. The approach consists of several behavioral tests, including response to a novel environment, mirror-reflection image, predator fish, and conspecifics, after exposure to a test chemical. Phenotype fingerprinting, a method for summarizing individual phenotypes based on the results of the behavioral tests, is then conducted to reduce data complexity and display the pattern of each compound on behavioral phenotypes in zebrafish. This approach may be useful to researchers studying the potential adverse effects of different pollutants. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Novel tank test Basic Protocol 2: Shoaling test Basic Protocol 3: Aggression test (mirror biting test) Basic Protocol 4: Social interaction test Basic Protocol 5: Fear response test Basic Protocol 6: PCA and heatmap clustering.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
7
|
Modica MV, Ahmad R, Ainsworth S, Anderluh G, Antunes A, Beis D, Caliskan F, Serra MD, Dutertre S, Moran Y, Nalbantsoy A, Oukkache N, Pekar S, Remm M, von Reumont BM, Sarigiannis Y, Tarallo A, Tytgat J, Undheim EAB, Utkin Y, Verdes A, Violette A, Zancolli G. The new COST Action European Venom Network (EUVEN)-synergy and future perspectives of modern venomics. Gigascience 2021; 10:6187861. [PMID: 33764467 PMCID: PMC7992391 DOI: 10.1093/gigascience/giab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022] Open
Abstract
Venom research is a highly multidisciplinary field that involves multiple subfields of
biology, informatics, pharmacology, medicine, and other areas. These different research
facets are often technologically challenging and pursued by different teams lacking
connection with each other. This lack of coordination hampers the full development of
venom investigation and applications. The COST Action CA19144–European Venom Network was
recently launched to promote synergistic interactions among different stakeholders and
foster venom research at the European level.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2318 Hamar, Norway
| | - Stuart Ainsworth
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Gregor Anderluh
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, 4450-208 Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Dimitris Beis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 115 27 Athens, Greece
| | - Figen Caliskan
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Biology, TR-26040 Eskisehir, Turkey
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6 - Torre di Francia, 16149 Genova, Italy
| | - Sebastien Dutertre
- IBMM, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram 9190401 Jerusalem, Israel
| | - Ayse Nalbantsoy
- Ege University, Bioengineering Department, 180 Bornova, 35040 Izmir, Turkey
| | - Naoual Oukkache
- Institut Pasteur of Morocco, 1 Place Louis Pasteur, 20100 Casablanca, Morocco
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czechia
| | - Maido Remm
- Department of Bioinformatics, University of Tartu, IMCB, Riia 23, 51010, Tartu, Estonia
| | - Bjoern Marcus von Reumont
- Department of Insect Biotechnology, Justus Liebig University, Winchester Str. 2, 35394 Giessen, Germany.,LOEWE Center for Translational Biodiversity Genomics, Senckenberganlage 25 D-60325 Frankfurt/Main, Germany
| | - Yiannis Sarigiannis
- Department of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, CY-2417 Nicosia, Cyprus
| | - Andrea Tarallo
- Department of Research infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Jan Tytgat
- Department of of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eivind Andreas Baste Undheim
- Centre for Ecological and Evolutionary Synthesis,Department of Biosciences, University of Oslo, 1066 Blindern, 0316 Oslo, Norway
| | - Yuri Utkin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russian Federation
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Calle de José Gutiérrez Abascal 2, 28006 Madrid, Spain.,Department of Life Science, Natural History Museum, Cromwell Rd, South Kensington, London SW7 5BD, UK
| | - Aude Violette
- Alphabiotoxine Laboratory, B-7911 Montroeul-au-Bois, Belgium
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, UNIL Sorge Le Biophore, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2021; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
9
|
Hsiao CD, Wu HH, Malhotra N, Liu YC, Wu YH, Lin YN, Saputra F, Santoso F, Chen KHC. Expression and Purification of Recombinant GHK Tripeptides Are Able to Protect against Acute Cardiotoxicity from Exposure to Waterborne-Copper in Zebrafish. Biomolecules 2020; 10:E1202. [PMID: 32825031 PMCID: PMC7564529 DOI: 10.3390/biom10091202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 01/15/2023] Open
Abstract
In this study, an alternative method is developed to replace chemical synthesis to produce glycyl-histidyl-lysine (GHK) tripeptides with a bacterial fermentation system. The target GHK tripeptides are cloned into expression plasmids carrying histidine-glutathione-S-transferase (GST) double tags and TEV (tobacco etch virus) cleavage sites at the N-terminus. After overexpression in Escherichia coli (E. coli) BL21 cells, the recombinant proteins are purified and recovered by high-pressure liquid chromatography (HPLC). UV-vis absorption spectroscopy was used to investigate the chemical and biological properties of the recombinant GHK tripeptides. The results demonstrated that one recombinant GHK tripeptide can bind one copper ion to form a GHK-Cu complex with high affinity, and the recombinant GHK peptide to copper ion ratio is 1:1. X-ray absorption near-edge spectroscopy (XANES) of the copper ions indicated that the oxidation state of copper in the recombinant GHK-Cu complexes here was Cu(II). All of the optical spectrum evidence suggests that the recombinant GHK tripeptide appears to possess the same biophysical and biochemical features as the GHK tripeptide isolated from human plasma. Due to the high binding affinity of GHK tripeptides to copper ions, we used zebrafish as an in vivo model to elucidate whether recombinant GHK tripeptides possess detoxification potential against the cardiotoxicity raised by waterborne Cu(II) exposure. Here, exposure to Cu(II) induced bradycardia and heartbeat irregularity in zebrafish larvae; however, the administration of GHK tripeptides could rescue those experiencing cardiotoxicity, even at the lowest concentration of 1 nM, where the GHK-Cu complex minimized CuSO4-induced cardiotoxicity effects at a GHK:Cu ratio of 1:10. On the other hand, copper and the combination with the GHK tripeptide did not significantly alter other cardiovascular parameters, including stroke volume, ejection fraction, and fractional shortening. Meanwhile, the heart rate and cardiac output were boosted after exposure with 1 nM of GHK peptides. In this study, recombinant GHK tripeptide expression was performed, along with purification and chemical property characterization, which revealed a potent cardiotoxicity protection function in vivo with zebrafish for the first time.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (C.-D.H.); (N.M.); (Y.-N.L.); (F.S.); (F.S.)
- Master Program of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Hsin-Hui Wu
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (H.-H.W.); (Y.-C.L.); (Y.-H.W.)
| | - Nemi Malhotra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (C.-D.H.); (N.M.); (Y.-N.L.); (F.S.); (F.S.)
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (H.-H.W.); (Y.-C.L.); (Y.-H.W.)
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Yen-Ching Liu
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (H.-H.W.); (Y.-C.L.); (Y.-H.W.)
| | - Ying-Hsuan Wu
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (H.-H.W.); (Y.-C.L.); (Y.-H.W.)
| | - Yu-Nung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (C.-D.H.); (N.M.); (Y.-N.L.); (F.S.); (F.S.)
| | - Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (C.-D.H.); (N.M.); (Y.-N.L.); (F.S.); (F.S.)
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (C.-D.H.); (N.M.); (Y.-N.L.); (F.S.); (F.S.)
- Master Program of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (H.-H.W.); (Y.-C.L.); (Y.-H.W.)
| |
Collapse
|
10
|
Tarasco M, Martins G, Gavaia PJ, Bebianno MJ, Cancela ML, Laizé V. ZEB316: A Small Stand-Alone Housing System to Study Microplastics in Small Teleosts. Zebrafish 2020; 17:18-26. [PMID: 31994994 DOI: 10.1089/zeb.2019.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many anthropogenic chemicals and plastic debris end up in the aquatic ecosystem worldwide, representing a major concern for the environment and human health. Small teleosts, such as zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes), offer significant advantages over classical animal models and are currently used as first-line organisms to assess environmental risks associated with many aquatic toxicants. Toxicological studies require the use of inert materials and controlled conditions. Yet, none of the available commercialized systems is adequate to assess the toxic effect of microplastics, because they contain components made of plastic polymers that may release micrometric plastic particles, leach manufacturing compounds, or adsorb chemicals. The ZEB316 stand-alone housing system presented in this study is meant to be a cost-effective and easy-to-built solution to perform state-of-the-art toxicological studies. It is built with inert and corrosion-resistant materials and provides good housing conditions through efficient recirculation and filtration systems. Assessment of water parameters and fish growth performance showed that the ZEB316 provides housing conditions comparable to those available from commercial housing systems.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Maria J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.,Algarve Biomedical Centre (ABC) and Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
11
|
Ecotoxicity Assessment of Fe 3O 4 Magnetic Nanoparticle Exposure in Adult Zebrafish at an Environmental Pertinent Concentration by Behavioral and Biochemical Testing. NANOMATERIALS 2019; 9:nano9060873. [PMID: 31181856 PMCID: PMC6631370 DOI: 10.3390/nano9060873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Magnetic Nanoparticles (MNPs) are widely being investigated as novel promising multifunctional agents, specifically in the fields of development for theranostics, electronics, waste water treatment, cosmetics, and energy storage devices. Unique, superior, and indispensable properties of magnetization, heat transfer, and melting temperature make MNPs emerge in the field of therapeutics in future healthcare industries. However, MNPs ecotoxicity as well as behavioral toxicity is still unexplored. Ecotoxicity analysis may assist investigate MNPs uptake mechanism and its influence on bioavailability under a given set of environmental factors, which can be followed to investigate the biomagnification of MNPs in the environment and health risk possessed by them in an ecological food chain. In this study, we attempted to determine the behavioral changes in zebrafishes at low (1 ppm) or high (10 ppm) concentration levels of Fe3O4 MNPs. The synthesized Fe3O4 MNPs sized at 15 nm were characterized by the transmission electron microscope (TEM), the superconducting quantum interference device (SQUID) magnetometer, and the multiple behavior tests for novel tank, mirror biting, conspecific social interaction, shoaling, circadian rhythm, and short-term memory of zebrafish under MNPs chronic exposure were demonstrated. Low concentration MNP exposure did not trigger alteration for majority behavioral and biochemical tests in adult zebrafish. However, tight shoal groups were observed at a high concentration of MNPs exposure along with a modest reduction in fish exploratory behavior and a significant reduction in conspecific social interaction behavior. By using enzyme-linked immunosorbent assays (ELISA), we found a high dose of MNPs exposure significantly elevated cortisol, acetylcholine, and catalase levels while reducing serotonin, acetylcholine esterase, and dopamine levels in the brain. Our data demonstrates chronic MNPs exposure at an environmentally-relevant dose is relatively safe by supporting evidence from an array of behavioral and biochemical tests. This combinational approach using behavioral and biochemical tests would be helpful for understanding the MNPs association with anticipated colloids and particles effecting bioavailability and uptake into cells and organisms.
Collapse
|
12
|
Mohanty R, Das SK, Singh NR, Patri M. Withania somnifera Leaf Extract Ameliorates Benzo[a]pyrene-Induced Behavioral and Neuromorphological Alterations by Improving Brain Antioxidant Status in Zebrafish (Danio rerio). Zebrafish 2016; 13:188-96. [DOI: 10.1089/zeb.2015.1215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ratnalipi Mohanty
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, India
| | - Saroj kumar Das
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, India
- Defence Institute of High Altitude Research, Leh, India
| | | | - Manorama Patri
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, India
| |
Collapse
|