1
|
Takagui FH, Viana P, Haerter CAG, Zuanon J, Birindelli JLO, Lui RL, Feldberg E, Margarido VP. Chromosomal analysis of two Acanthodoras species (Doradidae, Siluriformes): Insights into the oldest thorny catfish clade and its karyotype evolution. JOURNAL OF FISH BIOLOGY 2024; 105:1109-1119. [PMID: 39007200 DOI: 10.1111/jfb.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Jansen Zuanon
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José Luís Olivan Birindelli
- Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Roberto Laridondo Lui
- Laboratório de Citogenética, Centro de Ciĉncias Biológicas e da Saúde, Cascavel, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | |
Collapse
|
2
|
Kowalski S, Haerter CAG, Perin DP, Takagui FH, Viana PF, Feldberg E, Blanco DR, Traldi JB, Giuliano-Caetano L, Lui RL. Karyotypic characterization of Centromochlus schultzi Rössel 1962 (Auchenipteridae, Centromochlinae) from the Xingu River basin: New inferences on chromosomal evolution in Centromochlus. Genet Mol Biol 2024; 47:e20230105. [PMID: 38530404 PMCID: PMC10993310 DOI: 10.1590/1678-4685-gmb-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/20/2023] [Indexed: 03/28/2024] Open
Abstract
Centromochlinae is a widely diverse subfamily with more than 50 species and several taxonomic conflicts due to morphological similarity between Tatia and Centromochlus species. However, cytogenetic studies on this group have been limited to only four species so far. Therefore, here we present the karyotype of Centromochlus schultzi from the Xingu River in Brazil using classic cytogenetic techniques, physical mapping of the 5S and 18S rDNAs, and telomeric sequences (TTAGGG)n. The species had 58 chromosomes, simple NORs and 18S rDNA sites. Heterochromatic regions were detected on the terminal position of most chromosomes, including pericentromeric and centromeric blocks that correspond to interstitial telomeric sites. The 5S rDNA had multiple sites, including a synteny with the 18S rDNA in the pair 24st, which is an ancestral feature for Doradidae, sister group of Auchenipteridae, but appears to be a homoplastic trait in this species. So far, C. schultzi is only the second species within Centromochlus to be karyotyped, but it has already presented characteristics with great potential to assist in future discussions on taxonomic issues in the subfamily Centromochlinae, including the first synteny between rDNAs in Auchenipteridae and also the presence of heterochromatic ITSs that could represent remnants of ancient chromosomal fusions.
Collapse
Affiliation(s)
- Samantha Kowalski
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Londrina, PR, Brazil
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Chrystian Aparecido Grillo Haerter
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Diana Paula Perin
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Fábio Hiroshi Takagui
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | | | | | | | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| |
Collapse
|
3
|
Zhou YL, Wu JJ, Gong GR, Liu M, Li Z, Guo XF, Wei WY, Zhang XJ, Mei J, Zhou L, Wang ZW, Gui JF. Barbel regeneration and function divergence in red-tail catfish (Hemibagrus wyckioides) based on the chromosome-level genomes and comparative transcriptomes. Int J Biol Macromol 2023; 232:123374. [PMID: 36702216 DOI: 10.1016/j.ijbiomac.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Catfish (Siluriformes) are one of the most diverse vertebrate orders and are characterized by whisker-like barbels, which are important sensory organs in most of teleosts. However, their specific biological functions are still unclear. Red-tail catfish (Hemibagrus wyckioides) is well-known catfish species with four pairs of barbels, of which the maxillary barbels reach two-thirds of the body length. In this study, a 776.58 Mb high-quality chromosome-level genome was assembled into 29 chromosomes. Comparative genome data indicated that the barbeled regeneration gene ccl33 has expanded into 11 tandemly duplicated copies. Transcriptome data revealed the functional differentiation of different barbels and suggested that the maxillary barbel might be necessary for water temperature perception. Taste receptor genes were also characterized in teleosts with different food habits. Selection pressures were revealed to affect the sugar-based solute transport domain of the sweet taste receptor gene t1r2 in carnivorous fishes. In addition, the bitter taste receptor gene t2r200 was found to be lost from the genomes of four catfish species. Therefore, our study provides a genomic foundation for understanding the regeneration and functional differentiation of barbels in red-tail catfish and also reveals novel insights into the feeding evolution of fish species with different feeding habits.
Collapse
Affiliation(s)
- Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming 650111, China
| | - Gao-Rui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin-Feng Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen-Yu Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Takagui FH, Viana P, Baumgärtner L, Bitencourt JA, Margarido VP, Lui RL, Feldberg E, Birindelli JLO, Almeida FS, Giuliano-Caetano L. Reconstruction of the Doradinae (Siluriformes-Doradidae) ancestral diploid number and NOR pattern reveals new insights about the karyotypic diversification of the Neotropical thorny catfishes. Genet Mol Biol 2021; 44:e20200068. [PMID: 34821336 PMCID: PMC8612126 DOI: 10.1590/1678-4685-gmb-2020-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/04/2021] [Indexed: 11/23/2022] Open
Abstract
Doradinae (Siluriformes: Doradidae) is the most species-rich subfamily among
thorny catfishes, encompassing over 77 valid species, found mainly in Amazon and
Platina hydrographic basins. Here, we analyzed seven Doradinae species using
combined methods (e.g., cytogenetic tools and Mesquite ancestral reconstruction
software) in order to scrutinize the processes that mediated the karyotype
diversification in this subfamily. Our ancestral reconstruction recovered that
2n=58 chromosomes and simple nucleolar organizer regions (NOR) are ancestral
features only for Wertheimerinae and the most clades of Doradinae. Some
exceptions were found in Trachydoras paraguayensis (2n=56),
Trachydoras steindachneri (2n=60), Ossancora
punctata (2n=66) and Platydoras hancockii whose
karyotypes showed a multiple NOR system. The large thorny catfishes, such as
Pterodoras granulosus, Oxydoras niger and
Centrodoras brachiatus share several karyotype features,
with subtle variations only regarding their heterochromatin distribution. On the
other hand, a remarkable karyotypic variability has been reported in the
fimbriate barbells thorny catfishes. These two contrasting karyoevolution
trajectories emerged from a complex interaction between chromosome
rearrangements (e.g., inversions and Robertsonian translocations) and mechanisms
of heterochromatin dispersion. Moreover, we believe that biological features,
such as microhabitats preferences, populational size, low vagility and migratory
behavior played a key role during the origin and maintenance of chromosome
diversity in Doradinae subfamily.
Collapse
Affiliation(s)
- Fábio H Takagui
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Laboratório de Citogenética Animal, Londrina, PR, Brazil
| | - Patrik Viana
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Genética Animal, Manaus, AM, Brazil
| | - Lucas Baumgärtner
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Cascavel, PR, Brazil
| | - Jamille A Bitencourt
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Laboratório de Citogenética, Jequié, BA, Brazil
| | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Cascavel, PR, Brazil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Cascavel, PR, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Genética Animal, Manaus, AM, Brazil
| | - Jose Luis Olivan Birindelli
- Universidade Estadual de Londrina, Departamento de Biologia Animal e Vegetal, Museu de Zoologia, Londrina, PR, Brazil
| | - Fernanda Simões Almeida
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Laboratório de Genética e Ecologia Animal, Londrina, PR, Brazil
| | - Lucia Giuliano-Caetano
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Laboratório de Citogenética Animal, Londrina, PR, Brazil
| |
Collapse
|
5
|
Sabaj MH, Arce H. M. Towards a complete classification of the Neotropical thorny catfishes (Siluriformes: Doradidae). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract We propose a revised classification of Doradidae based on phylogenetic analyses of sequence data for one nuclear (rag1) and two mitochondrial (co1, 16s) genes, and corroborated by caudal-fin morphology. The molecular dataset comprises 174 doradid specimens representing all 31 valid genera, 83 of the 96 valid extant species and 17 species-level taxa that remain undescribed or nominally unassigned. Parsimony and Bayesian analyses of molecular data support six major lineages of doradids assigned here to three nominal subfamilies (Astrodoradinae, Doradinae, Wertheimerinae) and three new ones (Acanthodoradinae, Agamyxinae, Rhinodoradinae). The maximum parsimony topology of Doradidae was sensitive to ingroup density and outgroup age. With the exceptions of Astrodoradinae and Doradinae, each subfamily is diagnosed by caudal-fin characteristics. The highest degree of fusion among skeletal elements supporting the caudal fin is observed in Acanthodoradinae and Aspredinidae, lineages that are sister to the remaining doradids and aspredinoids (i.e., Auchenipteridae + Doradidae), respectively. Fusion among caudal-fin elements tends to be higher in taxa with rounded, truncate or emarginate tails and such taxa typically occupy shallow, lentic habitats with ample structure. Caudal-fin elements are more separated in taxa with moderately to deeply forked tails that occupy lotic habitats in medium to large river channels.
Collapse
|
6
|
Takagui FH, Baumgärtner L, Baldissera JN, Laridondo Lui R, Margarido VP, Fonteles SBA, Garcia C, Birindelli JO, Moreira-Filho O, Almeida FS, Giuliano-Caetano L. Chromosomal Diversity of Thorny Catfishes (Siluriformes-Doradidae): A Case of Allopatric Speciation Among Wertheimerinae Species of São Francisco and Brazilian Eastern Coastal Drainages. Zebrafish 2019; 16:477-485. [PMID: 31453759 DOI: 10.1089/zeb.2019.1769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wertheimerinae is a small subfamily of thorny catfish composed of two species found in eastern Brazilian coastal drainages: Wertheimeria maculata and Kalyptodoras bahiensis. According to molecular phylogenetic analysis, Franciscodoras marmoratus an endemic species of the São Francisco River is also a member of this subfamily. Even though both phylogenetic approaches suggest that this group is one of the oldest lineages of the Doradidae, a disagreement remains about the constitution of Wertheimerinae. Hence, cytogenetic analysis is important to understand the karyotypic evolution of thorny catfish and can be a useful cytotaxonomic tool to clarify the relationships between these species. All Wertheimerinae species, and F. marmoratus here analyzed, shared 2n = 58 chromosomes, karyotypic formulas (24m+12sm +8st +14a), and nucleolus organizer region (NOR) pattern (terminal 18S rDNA sites on pair 22). Differences were noted in heterochromatin and 5S rDNA site distribution. The chromosomal markers here applied added to the molecular data, reinforcing that these three species actually represent a well-resolved taxonomic unit. Our results represent one more evidence of the ancient connectivity between eastern coastal drainages and São Francisco River, whose separation represented an important event for the allopatric speciation that produced the current forms of Wertheimerinae subfamily.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Lucas Baumgärtner
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Joana Neres Baldissera
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Roberto Laridondo Lui
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Vladimir Pavan Margarido
- Cytogenetic Laboratory, Center for Biological and Health Sciences, Western Paraná State University, Cascavel, Brazil
| | - Soraia Barreto Aguiar Fonteles
- Genetics of Aquatic Organisms Laboratory, Center for Agrarian Environmental and Biological Sciences, Federal University of Recôncavo of Bahia, Cruz das Almas, Bahia, Brazil
| | - Caroline Garcia
- Cytogenetic Laboratory, Department of Biological Sciences, State University of Southwest of Bahia, Jequié, Bahia, Brazil
| | - José Olivan Birindelli
- Museum of Zoology, Department of Animal and Plant Biology, Centro de Ciências Biológicas, Londrina State University, Londrina, Brazil
| | - Orlando Moreira-Filho
- Molecular Biodiversity and Conservation Laboratory, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Fernanda Simões Almeida
- Genetics and Animal Ecology Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Lucia Giuliano-Caetano
- Animal Cytogenetics Laboratory, Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Brazil
| |
Collapse
|