1
|
Kelbert M, Jordán-Pla A, de Miguel-Jiménez L, García-Martínez J, Selitrennik M, Guterman A, Henig N, Granneman S, Pérez-Ortín JE, Chávez S, Choder M. The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. eLife 2024; 12:RP90766. [PMID: 39356734 PMCID: PMC11446548 DOI: 10.7554/elife.90766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.
Collapse
Affiliation(s)
- Moran Kelbert
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Lola de Miguel-Jiménez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - José García-Martínez
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Adi Guterman
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Noa Henig
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - José E Pérez-Ortín
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
2
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
3
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
4
|
Garrido-Godino AI, Martín-Expósito M, Gutiérrez-Santiago F, Perez-Fernandez J, Navarro F. Rpb4/7, a key element of RNA pol II to coordinate mRNA synthesis in the nucleus with cytoplasmic functions in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194846. [PMID: 35905859 DOI: 10.1016/j.bbagrm.2022.194846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - M Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - J Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain.
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
| |
Collapse
|
5
|
Mechanisms of cellular mRNA transcript homeostasis. Trends Cell Biol 2022; 32:655-668. [PMID: 35660047 DOI: 10.1016/j.tcb.2022.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
For most genes, mRNA transcript abundance scales with cell size to ensure a constant concentration. Scaling of mRNA synthesis rates with cell size plays an important role, with regulation of the activity and abundance of RNA polymerase II (Pol II) now emerging as a key point of control. However, there is also considerable evidence for feedback mechanisms that kinetically couple the rates of mRNA synthesis, nuclear export, and degradation to allow cells to compensate for changes in one by adjusting the others. Researchers are beginning to integrate results from these different fields to reveal the mechanisms underlying transcript homeostasis. This will be crucial for moving beyond our current understanding of relative gene expression towards an appreciation of how absolute transcript levels are linked to other aspects of the cellular phenotype.
Collapse
|
6
|
Du J, Babik S, Li Y, Deol KK, Eyles SJ, Fejzo J, Tonelli M, Strieter E. A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. eLife 2022; 11:e76100. [PMID: 35451368 PMCID: PMC9033301 DOI: 10.7554/elife.76100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Degradation by the 26 S proteasome is an intricately regulated process fine tuned by the precise nature of ubiquitin modifications attached to a protein substrate. By debranching ubiquitin chains composed of K48 linkages, the proteasome-associated ubiquitin C-terminal hydrolase UCHL5/UCH37 serves as a positive regulator of protein degradation. How UCH37 achieves specificity for K48 chains is unclear. Here, we use a combination of hydrogen-deuterium mass spectrometry, chemical crosslinking, small-angle X-ray scattering, nuclear magnetic resonance (NMR), molecular docking, and targeted mutagenesis to uncover a cryptic K48 ubiquitin (Ub) chain-specific binding site on the opposite face of UCH37 relative to the canonical S1 (cS1) ubiquitin-binding site. Biochemical assays demonstrate the K48 chain-specific binding site is required for chain debranching and proteasome-mediated degradation of proteins modified with branched chains. Using quantitative proteomics, translation shutoff experiments, and linkage-specific affinity tools, we then identify specific proteins whose degradation depends on the debranching activity of UCH37. Our findings suggest that UCH37 and potentially other DUBs could use more than one S1 site to perform different biochemical functions.
Collapse
Affiliation(s)
- Jiale Du
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Sandor Babik
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Kirandeep K Deol
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts AmherstAmherstUnited States
| | - Jasna Fejzo
- Biomolecular NMR Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts AmherstAmherstUnited States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-MadisonMadisonUnited States
| | - Eric Strieter
- Department of Chemistry, University of Massachusetts AmherstAmherstUnited States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
7
|
Garrido-Godino AI, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Mota-Trujillo MDC, Navarro F. The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:2002. [PMID: 35216121 PMCID: PMC8875030 DOI: 10.3390/ijms23042002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Rtr1 is an RNA polymerase II (RNA pol II) CTD-phosphatase that influences gene expression during the transition from transcription initiation to elongation and during transcription termination. Rtr1 interacts with the RNA pol II and this interaction depends on the phosphorylation state of the CTD of Rpb1, which may influence dissociation of the heterodimer Rpb4/7 during transcription. In addition, Rtr1 was proposed as an RNA pol II import factor in RNA pol II biogenesis and participates in mRNA decay by autoregulating the turnover of its own mRNA. Our work shows that Rtr1 acts in RNA pol II assembly by mediating the Rpb4/7 association with the rest of the enzyme. RTR1 deletion alters RNA pol II assembly and increases the amount of RNA pol II associated with the chromatin that lacks Rpb4, decreasing Rpb4-mRNA imprinting and, consequently, increasing mRNA stability. Thus, Rtr1 interplays RNA pol II biogenesis and mRNA decay regulation. Our data also indicate that Rtr1 mediates mRNA decay regulation more broadly than previously proposed by cooperating with Rpb4. Interestingly, our data include new layers in the mechanisms of gene regulation and in the crosstalk between mRNA synthesis and decay by demonstrating how the association of Rpb4/7 to the RNA pol II influences mRNA decay.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
8
|
Deletion of the non-essential Rpb9 subunit of RNA polymerase II results in pleiotropic phenotypes in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140654. [PMID: 33775921 DOI: 10.1016/j.bbapap.2021.140654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Schizosaccharomyces pombe RNA polymerase II comprises twelve different subunits. Its Rpb9 subunit comprises 113 amino acids, and is the only non-essential subunit of S. pombe RNA polymerase II. However, its functions have not been studied in S. pombe. The results presented in this study demonstrate that Rpb9 is involved in regulating growth under optimum and certain stress conditions in S. pombe. To further address the role (s) of various domains of this subunit in regulating these phenotypes, deletion mutant analysis was done. We observed that the region spanning 1-74 amino acids, encompassing the amino-terminal zinc finger domain and the linker region of Rpb9 was able to rescue the phenotypes associated with rpb9+deletion. We also demonstrate that the functions of this subunit are only partially conserved among yeast and humans. Our computational biology approaches provide a structural basis for the differential role of various Rpb9 domains in S. pombe. Furthermore, using these tools we show that there has been a co-evolution of the interaction residues between the Rpb9 subunit and the two largest subunits of RNA polymerase II, allowing for a more stringent organism-specific packing. Taken together, our results have provided functional and structural insights into the Rpb9 subunit of S. pombe.
Collapse
|
9
|
Richard S, Gross L, Fischer J, Bendalak K, Ziv T, Urim S, Choder M. Numerous Post-translational Modifications of RNA Polymerase II Subunit Rpb4/7 Link Transcription to Post-transcriptional Mechanisms. Cell Rep 2021; 34:108578. [PMID: 33440147 DOI: 10.1016/j.celrep.2020.108578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/24/2020] [Accepted: 12/09/2020] [Indexed: 01/25/2023] Open
Abstract
Rpb4/7 binds RNA polymerase II (RNA Pol II) transcripts co-transcriptionally and accompanies them throughout their lives. By virtue of its capacity to interact with key regulators (e.g., RNA Pol II, eIF3, and Pat1) temporally and spatially, Rpb4/7 regulates the major stages of the mRNA life cycle. Here we show that Rpb4/7 can undergo more than 100 combinations of post-translational modifications (PTMs). Remarkably, the Rpb4/7 PTM repertoire changes as the mRNA/Rpb4/7 complex progresses from one stage to the next. These temporal PTMs regulate Rpb4 interactions with key regulators of gene expression that control transcriptional and post-transcriptional stages. Moreover, one mutant type specifically affects mRNA synthesis, whereas the other affects mRNA synthesis and decay; both types disrupt the balance between mRNA synthesis and decay ("mRNA buffering") and the cell's capacity to respond to the environment. We propose that temporal Rpb4/7 PTMs mediate the cross-talk among the various stages of the mRNA life cycle.
Collapse
Affiliation(s)
- Stephen Richard
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lital Gross
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jonathan Fischer
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Keren Bendalak
- Smoler Proteomics Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shira Urim
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
10
|
Garrido-Godino AI, Gupta I, Gutiérrez-Santiago F, Martínez-Padilla AB, Alekseenko A, Steinmetz LM, Pérez-Ortín JE, Pelechano V, Navarro F. Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 2020; 18:1206-1220. [PMID: 33094674 DOI: 10.1080/15476286.2020.1839229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analysed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - I Gupta
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, Hauz Khas, India
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A B Martínez-Padilla
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - L M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - J E Pérez-Ortín
- E.R.I. Biotecmed, Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - V Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
11
|
RNA polymerase II subunit D is essential for zebrafish development. Sci Rep 2020; 10:13213. [PMID: 32764610 PMCID: PMC7413394 DOI: 10.1038/s41598-020-70110-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
DNA-directed RNA polymerase II (pol II) is composed of ten core and two dissociable subunits. The dissociable subcomplex is a heterodimer of Rpb4/Polr2d and Rpb7/Polr2g, which are encoded by RPB4/polr2d and RPB7/polr2g genes, respectively. Functional studies of Rpb4/Polr2d in yeast have revealed that Rpb4 plays a role primarily in pol II-mediated RNA synthesis and partly in various mRNA regulations including pre-mRNA splicing, nuclear export of mRNAs and decay of mRNAs. Although Rpb4 is evolutionally highly conserved from yeast to human, it is dispensable for survival in budding yeast S. cerevisiae, whereas it was indispensable for survival in fission yeast S. pombe, slime molds and fruit fly. To elucidate whether Rpb4/Polr2d is necessary for development and survival of vertebrate animals, we generated polr2d-deficient zebrafish. The polr2d mutant embryos exhibited progressive delay of somitogenesis at the onset of 11 h postfertilization (hpf). Mutant embryos then showed increased cell death at 15 hpf, displayed hypoplasia such as small eye and cardiac edema by 48 hpf and prematurely died by 60 hpf. In accordance with these developmental defects, our RT-qPCR revealed that expression of housekeeping and zygotic genes was diminished in mutants. Collectively, we conclude that Rpb4/Polr2d is indispensable for vertebrate development.
Collapse
|
12
|
Calvo O. RNA polymerase II phosphorylation and gene looping: new roles for the Rpb4/7 heterodimer in regulating gene expression. Curr Genet 2020; 66:927-937. [PMID: 32508001 DOI: 10.1007/s00294-020-01084-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
In eukaryotes, cellular RNAs are produced by three nuclear RNA polymerases (RNAPI, II, and III), which are multisubunit complexes. They share structural and functional features, although they are specialized in the synthesis of specific RNAs. RNAPII transcribes the vast majority of cellular RNAs, including mRNAs and a large number of noncoding RNAs. The structure of RNAPII is highly conserved in all eukaryotes, consisting of 12 subunits (Rpb1-12) organized into five structural modules, among which the Rpb4 and Rpb7 subunits form the stalk. Early studies suggested an accessory role for Rpb4, because is required for specific gene transcription pathways. Far from this initial hypothesis, it is now well established that the Rpb4/7 heterodimer plays much wider roles in gene expression regulation. It participates in nuclear and cytosolic processes ranging from transcription to translation and mRNA degradation in a cyclical process. For this reason, Rpb4/7 is considered a coordinator of gene expression. New functions have been added to the list of stalk functions during transcription, which will be reviewed herein: first, a role in the maintenance of proper RNAPII phosphorylation levels, and second, a role in the establishment of a looped gene architecture in actively transcribed genes.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González 2, Salamanca, 37007, España.
| |
Collapse
|
13
|
Singh P, James RS, Mee CJ, Morozov IY. mRNA levels are buffered upon knockdown of RNA decay and translation factors via adjustment of transcription rates in human HepG2 cells. RNA Biol 2019; 16:1147-1155. [PMID: 31116665 DOI: 10.1080/15476286.2019.1621121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence from yeast and mammals argues the existence of cross-talk between transcription and mRNA decay. Stabilization of transcripts upon depletion of mRNA decay factors generally leads to no changes in mRNA abundance, attributing this to decreased transcription rates. We show that knockdown of human XRN1, CNOT6 and ETF1 genes in HepG2 cells led to significant alteration in stability of specific mRNAs, alterations in half-life were inversely associated with transcription rates, mostly not resulting in changes in abundance. We demonstrate the existence of the gene expression buffering mechanism in human cells that responds to both transcript stabilization and destabilization to maintain mRNA abundance via altered transcription rates and may involve translation. We propose that this buffering may hold novel cancer therapeutic targets.
Collapse
Affiliation(s)
- Pavneet Singh
- a Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| | - Rob S James
- a Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| | - Christopher J Mee
- a Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| | - Igor Y Morozov
- a Centre for Sport, Exercise and Life Sciences, Coventry University , Coventry , UK
| |
Collapse
|
14
|
Kumar D, Varshney S, Sengupta S, Sharma N. A comparative study of the proteome regulated by the Rpb4 and Rpb7 subunits of RNA polymerase II in fission yeast. J Proteomics 2019; 199:77-88. [PMID: 30862564 DOI: 10.1016/j.jprot.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 03/04/2019] [Indexed: 01/13/2023]
Abstract
RNA polymerase II is a conserved multi-subunit enzyme made up of twelve different subunits. Two of these subunits, Rpb4 and Rpb7, have been shown to perform functions in both transcription as well as outside of transcription in Saccharomyces cerevisiae. However, our knowledge about the roles of these subunits in Schizosaccharomyces pombe and higher eukaryotes is still limited. Moreover, both Rpb4 and Rpb7 are indispensable for viability of S. pombe and higher eukaryotes, in comparison to S. cerevisiae where deletion of only Rpb7 results in lethality. Therefore in this study, we used S. pombe strains expressing reduced levels of these subunits to determine their impact on the S. pombe proteome employing i-TRAQ based proteomics approach. Furthermore, proteomic profiling was carried out at two different time points to gain a temporal insight into the processes regulated by Rpb4 and Rpb7. The results showed that reduced levels of either Rpb4 or Rpb7 affected the expression of proteins involved in metabolism and ribosome biogenesis at both the time points. Our polysomal profiling experiments further revealed a role of these subunits in translation. Taken together, our results suggest a key role of Rpb4 and Rpb7 subunits in ribosome biogenesis and protein translation in S. pombe. SIGNIFICANCE: Rpb4 and Rpb7 subunits of RNA polymerase II are known for their diverse roles in regulating transcription, mRNA export, mRNA decay, stress response and translation in S. cerevisiae. However, their roles in other organisms are yet to be characterized in detail. Different lines of evidence also suggest that these subunits may function independently as well as a complex in budding yeast. Therefore, in the present study we employed a genome-wide quantitative proteomics-based approach to gain deeper insights into their cellular roles, and to examine if they regulate similar or different biological pathways in fission yeast. Our results provide evidence that they are both involved in primarily regulating metabolic pathways and ribosome biogenesis and also, play a role in protein translation in S. pombe.
Collapse
Affiliation(s)
- Deepak Kumar
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Swati Varshney
- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi 110020, India
| | - Shantanu Sengupta
- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB campus, New Delhi 110020, India.
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
15
|
Duek L, Barkai O, Elran R, Adawi I, Choder M. Dissociation of Rpb4 from RNA polymerase II is important for yeast functionality. PLoS One 2018; 13:e0206161. [PMID: 30359412 PMCID: PMC6201915 DOI: 10.1371/journal.pone.0206161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022] Open
Abstract
Rpb4 is an RNA polymerase II (Pol II) subunit that binds Pol II transcripts co-transcriptionally, accompanies them to the cytoplasm and modulates mRNA export, translation and decay by interacting with cytoplasmic RNA modulators. The importance of the cytoplasmic roles of Rpb4 was challenged by a study reporting that the phenotype of rpb2Δ rpb4Δ cells can be rescued by an Rpb2-Rpb4 fusion protein, assuming that its Rpb4 moiety cannot dissociate from Pol II and functions in the cytoplasm. Here we demonstrate that although the fusion protein supports normal transcription, it adversely affects mRNA decay, cell proliferation and adaptability-e.g., response to stress. These defects are similar, albeit milder, than the defects that characterize rpb4Δ cells. At least two mechanisms alleviate the deleterious effect of the fusion protein. First, a portion of this fusion protein is cleaved into free Rpb2 and Rpb4. The free Rpb4 is functional, as it binds mRNAs and polysomes, like WT Rpb4. Second, the fusion protein is also capable of binding poly(A)+ mRNAs in the cytoplasm, in an Rpb7-mediated manner, probably complementing the functions of the diminished Rpb4. Collectively, normal coupling between mRNA synthesis and decay requires wild-type configuration of Rpb4, and fusing Rpb4 to Rpb2 compromises this coupling.
Collapse
Affiliation(s)
- Lea Duek
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Oren Barkai
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Ron Elran
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Isra Adawi
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
16
|
Chen T, van Steensel B. Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genet 2017; 13:e1006929. [PMID: 28771467 PMCID: PMC5557608 DOI: 10.1371/journal.pgen.1006929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/15/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023] Open
Abstract
Eukaryotic mRNAs undergo a cycle of transcription, nuclear export, and degradation. A major challenge is to obtain a global, quantitative view of these processes. Here we measured the genome-wide nucleocytoplasmic dynamics of mRNA in Drosophila cells by metabolic labeling in combination with cellular fractionation. By mathematical modeling of these data we determined rates of transcription, export and cytoplasmic decay for 5420 genes. We characterized these kinetic rates and investigated links with mRNA features, RNA-binding proteins (RBPs) and chromatin states. We found prominent correlations between mRNA decay rate and transcript size, while nuclear export rates are linked to the size of the 3'UTR. Transcription, export and decay rates are each associated with distinct spectra of RBPs. Specific classes of genes, such as those encoding cytoplasmic ribosomal proteins, exhibit characteristic combinations of rate constants, suggesting modular control. Binding of splicing factors is associated with faster rates of export, and our data suggest coordinated regulation of nuclear export of specific functional classes of genes. Finally, correlations between rate constants suggest global coordination between the three processes. Our approach provides insights into the genome-wide nucleocytoplasmic kinetics of mRNA and should be generally applicable to other cell systems. All mRNAs start from production in the nucleus, undergo exportation through nuclear pores and finally are degraded in the cytoplasm. A comprehensive characterization of the kinetic rates of all mRNAs is an important prerequisite for a global understanding of the regulation of the transcriptome and the cell. By conducting a time-series experiment and building a mathematical model, we trace the dynamics of mRNAs from the nucleus to the cytoplasm and determine the rates at each kinetic step at transcriptome-wide level. This information allows us to associate mRNA kinetic rates with a wealth of biological features and made some intriguing discoveries. We show mRNA decay is positively linked to transcript length while mRNA export is negatively linked to the length of the 3' UTR. We show binding of splicing factors is associated with faster rates of mRNA export. We provide evidence for global coordination between nuclear export an decay of mRNA. We show genes sharing specific functions tend to have similar nucleoplasmic kinetics, in which ribosomal proteins possessing special kinetic features exclusively stand out. Altogether, our integrated approach to quantitatively determine the rates of kinetic steps on a gene-by-gene basis provides a blueprint to obtain the global understanding of RNA regulation.
Collapse
Affiliation(s)
- Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Das S, Sarkar D, Das B. The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:212-228. [PMID: 28706937 PMCID: PMC5507684 DOI: 10.15698/mic2017.07.580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cellular transcriptome is shaped by both the rates of mRNA synthesis in the nucleus and mRNA degradation in the cytoplasm under a specified condition. The last decade witnessed an exciting development in the field of post-transcriptional regulation of gene expression which underscored a strong functional coupling between the transcription and mRNA degradation. The functional integration is principally mediated by a group of specialized promoters and transcription factors that govern the stability of their cognate transcripts by “marking” them with a specific factor termed “coordinator.” The “mark” carried by the message is later decoded in the cytoplasm which involves the stimulation of one or more mRNA-decay factors, either directly by the “coordinator” itself or in an indirect manner. Activation of the decay factor(s), in turn, leads to the alteration of the stability of the marked message in a selective fashion. Thus, the integration between mRNA synthesis and decay plays a potentially significant role to shape appropriate gene expression profiles during cell cycle progression, cell division, cellular differentiation and proliferation, stress, immune and inflammatory responses, and may enhance the rate of biological evolution.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Debasish Sarkar
- Present Address: Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
18
|
Garrido-Godino AI, García-López MC, García-Martínez J, Pelechano V, Medina DA, Pérez-Ortín JE, Navarro F. Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:731-43. [PMID: 27001033 DOI: 10.1016/j.bbagrm.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023]
Abstract
The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we propose that Rpb4 serves as a key to globally modulate mRNA stability as well as to coordinate transcription and decay. Overall, our results imply that post-transcriptional regulation plays a major role in controlling the ESR at both the transcription and mRNA decay levels.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - M C García-López
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain
| | - J García-Martínez
- Departamento de Genética, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - V Pelechano
- European Molecular Biology Laboratories (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - D A Medina
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - J E Pérez-Ortín
- ERI Biotecmed, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain.
| | - F Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain.
| |
Collapse
|
19
|
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. SCIENCE ADVANCES 2016; 2:e1501340. [PMID: 26989783 PMCID: PMC4788475 DOI: 10.1126/sciadv.1501340] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
Collapse
|
20
|
Modulating the level of the Rpb7 subunit of RNA polymerase II affects cell separation in Schizosaccharomyces pombe. Res Microbiol 2015; 166:20-7. [DOI: 10.1016/j.resmic.2014.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/17/2022]
|
21
|
Choder M. mRNA imprinting: Additional level in the regulation of gene expression. CELLULAR LOGISTICS 2014; 1:37-40. [PMID: 21686103 DOI: 10.4161/cl.1.1.14465] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/12/2022]
Abstract
Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This "mRNA imprinting" lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as "mRNA-based epigenetics."
Collapse
Affiliation(s)
- Mordechai Choder
- Department of Molecular Microbiology; Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa, Israel
| |
Collapse
|
22
|
The Not5 subunit of the ccr4-not complex connects transcription and translation. PLoS Genet 2014; 10:e1004569. [PMID: 25340856 PMCID: PMC4207488 DOI: 10.1371/journal.pgen.1004569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have suggested that a sub-complex of RNA polymerase II composed of Rpb4 and Rpb7 couples the nuclear and cytoplasmic stages of gene expression by associating with newly made mRNAs in the nucleus, and contributing to their translation and degradation in the cytoplasm. Here we show by yeast two hybrid and co-immunoprecipitation experiments, followed by ribosome fractionation and fluorescent microscopy, that a subunit of the Ccr4-Not complex, Not5, is essential in the nucleus for the cytoplasmic functions of Rpb4. Not5 interacts with Rpb4; it is required for the presence of Rpb4 in polysomes, for interaction of Rpb4 with the translation initiation factor eIF3 and for association of Rpb4 with mRNAs. We find that Rpb7 presence in the cytoplasm and polysomes is much less significant than that of Rpb4, and that it does not depend upon Not5. Hence Not5-dependence unlinks the cytoplasmic functions of Rpb4 and Rpb7. We additionally determine with RNA immunoprecipitation and native gel analysis that Not5 is needed in the cytoplasm for the co-translational assembly of RNA polymerase II. This stems from the importance of Not5 for the association of the R2TP Hsp90 co-chaperone with polysomes translating RPB1 mRNA to protect newly synthesized Rpb1 from aggregation. Hence taken together our results show that Not5 interconnects translation and transcription.
Collapse
|
23
|
Schulz D, Pirkl N, Lehmann E, Cramer P. Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II. J Biol Chem 2014; 289:17446-52. [PMID: 24802753 DOI: 10.1074/jbc.m114.568014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA polymerase II (Pol II) is the central enzyme that carries out eukaryotic mRNA transcription and consists of a 10-subunit catalytic core and a subcomplex of subunits Rpb4 and Rpb7 (Rpb4/7). Rpb4/7 has been proposed to dissociate from Pol II, enter the cytoplasm, and function there in mRNA translation and degradation. Here we provide evidence that Rpb4 mainly functions in nuclear mRNA synthesis by Pol II, as well as evidence arguing against an important cytoplasmic role in mRNA degradation. We used metabolic RNA labeling and comparative Dynamic Transcriptome Analysis to show that Rpb4 deletion in Saccharomyces cerevisiae causes a drastic defect in mRNA synthesis that is compensated by down-regulation of mRNA degradation, resulting in mRNA level buffering. Deletion of Rpb4 can be rescued by covalent fusion of Rpb4 to the Pol II core subunit Rpb2, which largely restores mRNA synthesis and degradation defects caused by Rpb4 deletion. Thus, Rpb4 is a bona fide Pol II core subunit that functions mainly in mRNA synthesis.
Collapse
Affiliation(s)
- Daniel Schulz
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Nicole Pirkl
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Elisabeth Lehmann
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Patrick Cramer
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and the Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Bloom ALM, Solomons JTG, Havel VE, Panepinto JC. Uncoupling of mRNA synthesis and degradation impairs adaptation to host temperature in Cryptococcus neoformans. Mol Microbiol 2013; 89:65-83. [PMID: 23659661 DOI: 10.1111/mmi.12258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome multiple stressors to cause disease in its human host. In this study, we report that C. neoformans rapidly and transiently repressed ribosomal protein (RP) transcripts during a transition from 30°C to host temperature. This repression was accompanied by accelerated mRNA degradation mediated by the major deadenylase, Ccr4, and influenced by the dissociable RNA polymerase II subunit, Rpb4. Destabilization and deadenylation of RP transcripts were impaired in an rpb4Δ mutant, suggesting that Rpb4 may be involved in host temperature-induced Ccr4-mediated decay. Accelerated decay of ER stress transcripts 1 h following a shift to host temperature was also impaired in the rpb4Δ mutant. In response to host temperature, Rpb4 moved from the nucleus to the cytoplasm, supporting a role for Rpb4 in coupling transcription and degradation. The PKH signalling pathway was implicated as a regulator of accelerated degradation of the RP transcripts, but not of the ER stress transcripts, revealing a further level of specificity. When transcription and degradation were uncoupled by deletion of Rpb4, growth at host temperature was impaired and virulence was attenuated. These data suggest that mRNA synthesis and decay are coupled in C. neoformans via Rpb4, and this tight coordination promotes host-temperature adaptation and pathogenicity.
Collapse
Affiliation(s)
- Amanda L M Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|
25
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|
26
|
The fate of the messenger is pre-determined: a new model for regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:643-53. [PMID: 23337853 DOI: 10.1016/j.bbagrm.2013.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
Recent years have seen a rise in publications demonstrating coupling between transcription and mRNA decay. This coupling most often accompanies cellular processes that involve transitions in gene expression patterns, for example during mitotic division and cellular differentiation and in response to cellular stress. Transcription can affect the mRNA fate by multiple mechanisms. The most novel finding is the process of co-transcriptional imprinting of mRNAs with proteins, which in turn regulate cytoplasmic mRNA stability. Transcription therefore is not only a catalyst of mRNA synthesis but also provides a platform that enables imprinting, which coordinates between transcription and mRNA decay. Here we present an overview of the literature, which provides the evidence of coupling between transcription and decay, review the mechanisms and regulators by which the two processes are coupled, discuss why such coupling is beneficial and present a new model for regulation of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
27
|
Zhao Y, Li KKC, Ng KP, Ng CH, Lee KAW. The RNA Pol II sub-complex hsRpb4/7 is required for viability of multiple human cell lines. Protein Cell 2012; 3:846-54. [PMID: 23073835 DOI: 10.1007/s13238-012-2085-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022] Open
Abstract
The evolutionarily conserved RNA Polymerase II Rpb4/7 sub-complex has been thoroughly studied in yeast and impacts gene expression at multiple levels including transcription, mRNA processing and decay. In addition Rpb4/7 exerts differential effects on gene expression in yeast and Rpb4 is not obligatory for yeast (S. cerevisiae) survival. Specialised roles for human (hs) Rpb4/7 have not been extensively described and we have probed this question by depleting hsRpb4/7 in established human cell lines using RNA interference. We find that Rpb4/7 protein levels are inter-dependent and accordingly, the functional effects of depleting either protein are co-incident. hsRpb4/7 exhibits gene-specific effects and cells initially remain viable upon hsRpb4/7 depletion. However prolonged hsRpb4/7 depletion is cytotoxic in the range of cell lines tested. Protracted cell death occurs by an unknown mechanism and in some cases is accompanied by a pronounced elongated cell morphology. In conclusion we provide evidence for a gene-specific role of hsRpb4/7 in human cell viability.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Life Science, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong SAR China
| | | | | | | | | |
Collapse
|
28
|
Dahan N, Choder M. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:169-73. [PMID: 22982191 DOI: 10.1016/j.bbagrm.2012.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/28/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, nuclear mRNA synthesis is physically separated from its cytoplasmic translation and degradation. Recent unexpected findings have revealed that, despite this separation, the transcriptional machinery can remotely control the cytoplasmic stages. Key to this coupling is the capacity of the transcriptional machinery to "imprint" the transcript with factors that escort it to the cytoplasm and regulate its localization, translation and decay. Some of these factors are known transcriptional regulators that also function in mRNA decay and are hence named "synthegradases". Imprinting can be carried out and/or regulated by RNA polymerase II or by promoter cis- and trans-acting elements. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Nili Dahan
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
29
|
Sharma N, Kumari R. Rpb4 and Rpb7: multifunctional subunits of RNA polymerase II. Crit Rev Microbiol 2012; 39:362-72. [DOI: 10.3109/1040841x.2012.711742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Lavut A, Raveh D. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability. PLoS Genet 2012; 8:e1002527. [PMID: 22383896 PMCID: PMC3285586 DOI: 10.1371/journal.pgen.1002527] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance its ability to withstand stress. 10%–15% of the yeast genome is modulated by stress; however, there is a discrepancy between the genes that are upregulated and the sensitivity of the null mutants of those genes to the stress. The question is: what happens to these highly expressed mRNAs? mRNAs have a complex lifecycle and non-translating mRNAs can be stored in cytoplasmic granules, processing P-bodies, and stress granules for decay or future translation, respectively. UFO1 encodes a component of the regulated protein degradation system, and its transcription is elevated by stress; however, the deletion mutants do not show enhanced sensitivity. UFO1 mRNA is stored in P-bodies and stress granules. Storage of mRNAs may contribute to the discrepancy between the steady state levels of stress-induced mRNAs and their proteins. To test this hypothesis, we expressed high levels of mRNA in cells unable to form P-bodies. We found that translation of these mRNAs was 3–8 fold higher than in wild-type cells. Furthermore high level expression of mRNA affected the viability of the mutants. The ability to store mRNAs for future translation or decay would generate different phenotypes in a genetically identical population and enhance its ability to withstand stress.
Collapse
Affiliation(s)
- Anna Lavut
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | - Dina Raveh
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
- * E-mail:
| |
Collapse
|
31
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
32
|
Pérez-Ortín JE, de Miguel-Jiménez L, Chávez S. Genome-wide studies of mRNA synthesis and degradation in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:604-15. [PMID: 22182827 DOI: 10.1016/j.bbagrm.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
In recent years, the use of genome-wide technologies has revolutionized the study of eukaryotic transcription producing results for thousands of genes at every step of mRNA life. The statistical analyses of the results for a single condition, different conditions, different transcription stages, or even between different techniques, is outlining a totally new landscape of the eukaryotic transcription process. Although most studies have been conducted in the yeast Saccharomyces cerevisiae as a model cell, others have also focused on higher eukaryotes, which can also be comparatively analyzed. The picture which emerges is that transcription is a more variable process than initially suspected, with large differences between genes at each stage of the process, from initiation to mRNA degradation, but with striking similarities for functionally related genes, indicating that all steps are coordinately regulated. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | | | | |
Collapse
|
33
|
Shalem O, Groisman B, Choder M, Dahan O, Pilpel Y. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II. PLoS Genet 2011; 7:e1002273. [PMID: 21931566 PMCID: PMC3169527 DOI: 10.1371/journal.pgen.1002273] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/19/2011] [Indexed: 01/13/2023] Open
Abstract
Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II) subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes. Organisms alter genes expression programs in response to changes in their environment. Such programs can specify fast induction, slow relaxation, oscillations, etc. Conceivably these kinetic outputs may depend on proper orchestration of the various phases of gene expression, including transcription, translation, and mRNA decay. In particular, in the transcriptomes of a broad range of species, fast mRNA “spikes” appear to result from surprisingly “pressing the gas and the brakes” together, i.e. by activating both transcription and degradation of same transcripts. A recently discovered molecular mechanism, in which subunits of RNA polymerase II (Pol II) associate to mRNAs during transcription and control their decay, could explain how such transcription-decay counter-action works. Yet, how such potential coupling responds to physiological conditions and how it shapes transcriptome kinetics remain unknown. Here we used a minimalist mutation in yeast RNA Pol II that is defective in the above mechanism in order to show that Pol II governs the ability of the cell to modulate mRNA decay in stress and, most importantly, that Pol II is essential for appropriate coupling between mRNA production and degradation. We further show that this transcription-decay coupling is responsible for shaping the transcriptome kinetic profiles under changing environmental conditions.
Collapse
Affiliation(s)
- Ophir Shalem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bella Groisman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Choder
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
34
|
Dahan O, Gingold H, Pilpel Y. Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet 2011; 27:316-22. [PMID: 21763027 DOI: 10.1016/j.tig.2011.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Gene expression comprises multiple stages, from transcription to protein degradation. Although much is known about the regulation of each stage separately, an understanding of the regulatory coupling between the different stages is only beginning to emerge. For example, there is a clear crosstalk between translation and transcription, and the localization and stability of an mRNA in the cytoplasm could already be determined during transcription in the nucleus. We review a diversity of mechanisms discovered in recent years that couple the different stages of gene expression. We then speculate on the functional and evolutionary significance of this coupling and suggest certain systems-level functionalities that might be optimized via the various coupling modes. In particular, we hypothesize that coupling is often an economic strategy that allows biological systems to respond robustly and precisely to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
35
|
Forget A, Chartrand P. Cotranscriptional assembly of mRNP complexes that determine the cytoplasmic fate of mRNA. Transcription 2011; 2:86-90. [PMID: 21468235 PMCID: PMC3062400 DOI: 10.4161/trns.2.2.14857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 12/22/2022] Open
Abstract
Unlike prokaryotes, in which transcription and translation are coupled, eukaryotes physically separate transcription in the nucleus from mRNA translation and degradation in the cytoplasm. However, recent evidence has revealed that the full picture is more complex and that the nuclear transcription machinery plays specific roles in regulating the cytoplasmic fate of mRNA.
Collapse
Affiliation(s)
- Amélie Forget
- Département de Biochimie; Université de Montréal; Montréal QC Canada
| | | |
Collapse
|
36
|
Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 2010; 143:552-63. [PMID: 21074047 DOI: 10.1016/j.cell.2010.10.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/28/2010] [Accepted: 10/25/2010] [Indexed: 01/13/2023]
Abstract
Little is known about crosstalk between the eukaryotic transcription and translation machineries that operate in different cell compartments. The yeast proteins Rpb4p and Rpb7p represent one such link as they form a heterodimer that shuttles between the nucleus, where it functions in transcription, and the cytoplasm, where it functions in the major mRNA decay pathways. Here we show that the Rpb4/7 heterodimer interacts physically and functionally with components of the translation initiation factor 3 (eIF3), and is required for efficient translation initiation. Efficient translation in the cytoplasm depends on association of Rpb4/7 with RNA polymerase II (Pol II) in the nucleus, leading to a model in which Pol II remotely controls translation. Hence, like in prokaryotes, the eukaryotic translation is coupled to transcription. We propose that Rpb4/7, through its interactions at each step in the mRNA lifecycle, represents a class of factors, "mRNA coordinators," which integrate the various stages of gene expression into a system.
Collapse
Affiliation(s)
- Liat Harel-Sharvit
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | | | | | | | | | | |
Collapse
|
37
|
De Francisci D, Campanaro S, Kornfeld G, Siddiqui KS, Williams TJ, Ertan H, Treu L, Pilak O, Lauro FM, Harrop SJ, Curmi PMG, Cavicchioli R. The RNA polymerase subunits E/F from the Antarctic archaeon Methanococcoides burtonii bind to specific species of mRNA. Environ Microbiol 2010; 13:2039-55. [DOI: 10.1111/j.1462-2920.2010.02385.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
The dissociable RPB4 subunit of RNA Pol II has vital functions in Drosophila. Mol Genet Genomics 2009; 283:89-97. [PMID: 19921261 DOI: 10.1007/s00438-009-0499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
RNA polymerase II (Pol II) is composed of a ten subunit core and a two subunit dissociable subcomplex comprising the fourth and seventh largest subunits, RPB4 and RPB7. The evolutionary highly conserved RPB4/7 heterodimer is positioned in the Pol II such that it can make contact with various factors involved in RNA biogenesis and is believed to play roles both during the process of transcription and post-transcription. A detailed analysis of RPB4/7 function in a multicellular eukaryote, however, is lacking partly because of the lack of a suitable genetic system. Here, we describe generation and initial analysis of Drosophila Rpb4 mutants. In the fly, RPB4 is a product of a bicistronic gene together with the ATAC histone acetyltransferase complex constituent ADA2a. DmAda2a and DmRpb4 are expressed during fly development at different levels. The structure of mature mRNA forms suggests that the production of DmADA2a and DmRPB4-specific mRNAs is ensured by alternative splicing. Genetic analysis indicates that both DmRPB4 and DmADA2a play essential roles, because their absence results in lethality in early and late larval stages, respectively. Upon stress of high temperature or nutritional starvation, the levels of RPB4 and ADA2a messages change differently. RPB4 colocalizes with Pol II to several sites on polytene chromosomes, however, at selected locus, the abundances of Pol II and RPB4 vary greatly. Our data suggest no tight functional link between DmADA2a and DmRPB4, and reveal differences in the abundances of Pol II core subunits and RPB4 localized at specific regions on polytene chromosomes, supporting the suggested role of RPB4 outside of transcription-engaged Pol II complexes.
Collapse
|
39
|
Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP. Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomics 2009; 9:311-23. [PMID: 19229567 PMCID: PMC2700865 DOI: 10.1007/s10142-009-0113-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/16/2009] [Accepted: 01/24/2009] [Indexed: 11/30/2022]
Abstract
Plant microspores can be reprogrammed from their normal pollen development to an embryogenic route in a process termed microspore embryogenesis or androgenesis. Stress treatment has a critical role in this process, inducing the dedifferentiation of microspores and conditioning the following androgenic response. In this study, we have used three barley doubled haploid lines with similar genetic background but different androgenic response. The Barley1 GeneChip was used for transcriptome comparison of these lines after mannitol stress treatment, allowing the identification of 213 differentially expressed genes. Most of these genes belong to the functional categories "cell rescue, defense, and virulence"; "metabolism"; "transcription"; and "transport". These genes were grouped into clusters according to their expression profiles among lines. A principal component analysis allowed us to associate specific gene expression clusters to phenotypic variables. Genes associated with the ability of microspores to divide and form embryos were mainly involved in changes in the structure and function of membranes, efficient use of available energy sources, and cell fate. Genes related to stress response, transcription and translation regulation, and degradation of pollen-specific proteins were associated with green plant production, while expression of genes related to plastid development was associated with albino plant regeneration.
Collapse
Affiliation(s)
- M. Muñoz-Amatriaín
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| | - J. T. Svensson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - A. M. Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| | - T. J. Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - M. P. Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo 13034, 50080 Zaragoza, Spain
| |
Collapse
|
40
|
Goler-Baron V, Selitrennik M, Barkai O, Haimovich G, Lotan R, Choder M. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev 2008; 22:2022-7. [PMID: 18676807 DOI: 10.1101/gad.473608] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Maintaining appropriate mRNAs levels is vital for any living cell. mRNA synthesis in the nucleus by RNA polymerase II core enzyme (Pol II) and mRNA decay by cytoplasmic machineries determine these levels. Yet, little is known about possible cross-talk between these processes. The yeast Rpb4/7 is a nucleo-cytoplasmic shuttling heterodimer that interacts with Pol II and with mRNAs and is required for mRNA decay in the cytoplasm. Here we show that interaction of Rpb4/7 with mRNAs and eventual decay of these mRNAs in the cytoplasm depends on association of Rpb4/7 with Pol II in the nucleus. We propose that, following its interaction with Pol II, Rpb4/7 functions in transcription, interacts with the transcript cotranscriptionally and travels with it to the cytoplasm to stimulate mRNA decay. Hence, by recruiting Rpb4/7, Pol II governs not only transcription but also mRNA decay.
Collapse
Affiliation(s)
- Vicky Goler-Baron
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Genomewide recruitment analysis of Rpb4, a subunit of polymerase II in Saccharomyces cerevisiae, reveals its involvement in transcription elongation. EUKARYOTIC CELL 2008; 7:1009-18. [PMID: 18441121 DOI: 10.1128/ec.00057-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rpb4/Rpb7 subcomplex of yeast RNA polymerase II (Pol II) has counterparts in all multisubunit RNA polymerases from archaebacteria to higher eukaryotes. The Rpb4/7 subcomplex in Saccharomyces cerevisiae is unique in that it easily dissociates from the core, unlike the case in other organisms. The relative levels of Rpb4 and Rpb7 in yeasts affect the differential gene expression and stress response. Rpb4 is nonessential in S. cerevisiae and affects expression of a small number of genes under normal growth conditions. Here, using a chromatin immunoprecipitation ("ChIP on-chip") technique, we compared genomewide binding of Rpb4 to that of a core Pol II subunit, Rpb3. Our results showed that in spite of being nonessential for survival, Rpb4 was recruited on coding regions of most transcriptionally active genes, similar to the case with the core Pol II subunit, Rpb3, albeit to a lesser extent. The extent of Rpb4 recruitment increased with increasing gene length. We also observed Pol II lacking Rpb4 to be defective in transcribing long, GC-rich transcription units, suggesting a role for Rpb4 in transcription elongation. This role in transcription elongation was supported by the observed 6-azauracil (6AU) sensitivity of the rpb4Delta mutant. Unlike most phenotypes of rpb4Delta, the 6AU sensitivity of the rpb4Delta strain was not rescued by overexpression of RPB7. This report provides the first instance of a distinct role for Rpb4 in transcription, which is independent of its interacting partner, Rpb7.
Collapse
|
42
|
Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. EUKARYOTIC CELL 2008; 7:938-48. [PMID: 18408053 DOI: 10.1128/ec.00042-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.
Collapse
|
43
|
Xue X, Lehming N. Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II. J Mol Biol 2008; 379:212-30. [PMID: 18448120 DOI: 10.1016/j.jmb.2008.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/19/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Nhp6p is an architectural Saccharomyces cerevisiae non-histone chromosomal protein that bends DNA and plays an important role in transcription and genome stability. We used the split-ubiquitin system to isolate proteins that interact with Nhp6p in vivo, and we confirmed 11 of these protein-protein interactions with glutathione S-transferase pull-down experiments in vitro. Most of the Nhp6p-interacting proteins are involved in transcription and DNA repair. We utilized the ZDS1, PUR5 and UME6 genes, which are repressed by Nhp6p and its interacting partners Rpb4p and Med3p, to study the chromosomal localization of these three proteins in wild-type and gene deletion strains. Nhp6p, Med3p and Rpb4p were found at the promoters of ZDS1, PUR5 and UME6, indicating that the repressing effects the three proteins had on the expression of these three genes had been direct ones. We also found that Med3p inhibited promoter clearance of RNA polymerase II, which contained the dissociable subunit Rpb4p, while Nhp6p recruited Rpb4p to the basal promoters of ZDS1, PUR5 and UME6. Our results further suggest that Rpb4p inhibits transcription initiation but stimulates transcription elongation and that Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | | |
Collapse
|
44
|
Runner VM, Podolny V, Buratowski S. The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3' processing factors. Mol Cell Biol 2008; 28:1883-91. [PMID: 18195044 PMCID: PMC2268395 DOI: 10.1128/mcb.01714-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/18/2007] [Accepted: 12/28/2007] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase II enzyme from the yeast Saccharomyces cerevisiae is a complex of 12 subunits, Rpb1 to Rpb12. Crystal structures of the full complex show that the polymerase consists of two separable components, a 10-subunit core including the catalytic active site and a heterodimer of the Rpb4 and Rpb7 subunits. To characterize the role of the Rpb4/7 heterodimer during transcription in vivo, chromatin immunoprecipitation was used to examine an rpb4Delta strain for effects on the behavior of the core polymerase as well as recruitment of other protein factors involved in transcription. Rpb4/7 cross-links throughout transcribed regions. Loss of Rpb4 results in a reduction of RNA polymerase II levels near 3' ends of multiple mRNA genes as well as a decreased association of 3'-end processing factors. Furthermore, loss of Rpb4 results in altered polyadenylation site usage at the RNA14 gene. Together, these results indicate that Rpb4 contributes to proper cotranscriptional 3'-end processing in vivo.
Collapse
Affiliation(s)
- Vanessa M Runner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
46
|
Chinnusamy V, Gong Z, Zhu JK. Nuclear RNA Export and Its Importance in Abiotic Stress Responses of Plants. Curr Top Microbiol Immunol 2008; 326:235-55. [DOI: 10.1007/978-3-540-76776-3_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Sampath V, Balakrishnan B, Verma-Gaur J, Onesti S, Sadhale PP. Unstructured N terminus of the RNA polymerase II subunit Rpb4 contributes to the interaction of Rpb4.Rpb7 subcomplex with the core RNA polymerase II of Saccharomyces cerevisiae. J Biol Chem 2007; 283:3923-31. [PMID: 18056993 DOI: 10.1074/jbc.m708746200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4.Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
48
|
Lotan R, Goler-Baron V, Duek L, Haimovich G, Choder M. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. ACTA ACUST UNITED AC 2007; 178:1133-43. [PMID: 17875743 PMCID: PMC2064649 DOI: 10.1083/jcb.200701165] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steady-state level of mRNAs is determined by the balance between their synthesis by RNA polymerase II (Pol II) and their decay. In the cytoplasm, mRNAs are degraded by two major pathways; one requires decapping and 5′ to 3′ exonuclease activity and the other involves 3′ to 5′ degradation. Rpb7p is a Pol II subunit that shuttles between the nucleus and the cytoplasm. Here, we show that Rpb7p is involved in the two mRNA decay pathways and possibly couples them. Rpb7p stimulates the deadenylation stage required for execution of both pathways. Additionally, Rpb7p is both an active component of the P bodies, where decapping and 5′ to 3′ degradation occur, and is capable of affecting the P bodies function. Moreover, Rpb7p interacts with the decapping regulator Pat1p in a manner important for the mRNA decay machinery. Rpb7p is also involved in the second pathway, as it stimulates 3′ to 5′ degradation. Our genetic analyses suggest that Rpb7p plays two distinct roles in mRNA decay, which can both be uncoupled from Rpb7p's role in transcription. Thus, Rpb7p plays pivotal roles in determining mRNA levels.
Collapse
Affiliation(s)
- Rona Lotan
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
49
|
Singh SR, Pillai B, Balakrishnan B, Naorem A, Sadhale PP. Relative levels of RNA polII subunits differentially affect starvation response in budding yeast. Biochem Biophys Res Commun 2007; 356:266-72. [PMID: 17346670 DOI: 10.1016/j.bbrc.2007.02.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The Rpb4/7 subcomplex of RNA polymerase II in Saccharomyces cerevisiae is known to play an important role in stress response and stress survival. These two proteins perform overlapping functions ensuring an appropriate cellular response through transcriptional regulation of gene expression. Rpb4 and Rpb7 also perform many cellular functions either together or independent of one another. Here, we show that Rpb4 and Rpb7 differently affect during the nutritional starvation response pathways of sporulation and pseudohyphae formation. Rpb4 enhances the cells' proficiency to sporulate but suppresses pseudohyphal growth. On the other hand, Rpb7 promotes pseudohyphal growth and suppresses sporulation in a dose-dependent manner. We present a model whereby the stoichiometry of Rpb4 and Rpb7 and their relative levels in the cell play a switch like role in establishing either sporulation or pseudohyphal gene expression.
Collapse
Affiliation(s)
- Sunanda R Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 12, India
| | | | | | | | | |
Collapse
|
50
|
Selitrennik M, Duek L, Lotan R, Choder M. Nucleocytoplasmic shuttling of the Rpb4p and Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two pathways. EUKARYOTIC CELL 2006; 5:2092-103. [PMID: 17056745 PMCID: PMC1694818 DOI: 10.1128/ec.00288-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rpb4p and Rpb7p are subunits of the RNA polymerase II of Saccharomyces cerevisiae that form a dissociable heterodimeric complex. Whereas the only reported function of Rpb7p is related to transcription, Rpb4p has been found to also act in mRNA export and in the major mRNA decay pathway that operates in the cytoplasm, thus raising the possibility that Rpb4p links between the nuclear and cytoplasmic processes. Here we show that both Rpb4p and Rpb7p shuttle between the nucleus and the cytoplasm. Shuttling kinetics of the two proteins are similar as long as their interaction is possible, suggesting that they shuttle as a heterodimer. Under normal conditions, shuttling of Rpb4p and Rpb7p depends on ongoing transcription. However, during severe stresses of heat shock, ethanol, and starvation, the two proteins shuttle via a transcription-independent pathway. Thus, Rpb4p and Rpb7p shuttle via two pathways, depending on environmental conditions.
Collapse
Affiliation(s)
- Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 31096
| | | | | | | |
Collapse
|