1
|
Song Y, Zhang J, Li Y, Cheng L, Song H, Zhang Y, Du G, Yu S, Zou Y, Xu Q. Exploring Bioinformatics Tools to Analyze the Role of CDC6 in the Progression of Polycystic Ovary Syndrome to Endometrial Cancer by Promoting Immune Infiltration. Int J Mol Sci 2024; 25:12974. [PMID: 39684684 DOI: 10.3390/ijms252312974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cell division cycle 6 (CDC6) is essential for the initiation of DNA replication in eukaryotic cells and contributes to the development of various human tumors. Polycystic ovarian syndrome (PCOS) is a reproductive endocrine disease in women of childbearing age, with a significant risk of endometrial cancer (EC). However, the role of CDC6 in the progression of PCOS to EC is unclear. Therefore, we examined CDC6 expression in patients with PCOS and EC. We evaluated the relationship between CDC6 expression and its prognostic value, potential biological functions, and immune infiltrates in patients with EC. In vitro analyses were performed to investigate the effects of CDC6 knockdown on EC proliferation, migration, invasion, and apoptosis. CDC6 expression was significantly upregulated in patients with PCOS and EC. Moreover, this protein caused EC by promoting the aberrant infiltration of macrophages into the immune microenvironment in patients with PCOS. A functional enrichment analysis revealed that CDC6 exerted its pro-cancer and pro-immune cell infiltration functions via the PI3K-AKT pathway. Moreover, it promoted EC proliferation, migration, and invasion but inhibited apoptosis. This protein significantly reduced EC survival when mutated. These findings demonstrate that CDC6 regulates the progression of PCOS to EC and promotes immune infiltration.
Collapse
Affiliation(s)
- Yuhang Song
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Yao Li
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Lufeng Cheng
- Basic Medical College, Xinjiang Medical University, Urumqi 830054, China
| | - Hua Song
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yuhang Zhang
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Guoqing Du
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Sunyue Yu
- School of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410017, China
| | - Qi Xu
- School of Basic Medicine, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
2
|
Shen M, Zhang Y, Tang L, Fu Q, Zhang J, Xu Y, Zeng H, Li Y. CDC6, a key replication licensing factor, is overexpressed and confers poor prognosis in diffuse large B-cell lymphoma. BMC Cancer 2023; 23:978. [PMID: 37833632 PMCID: PMC10571299 DOI: 10.1186/s12885-023-11186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/17/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Cell division cycle 6 (CDC6) is a key licensing factor in the assembly of pre-replicative complexes at origins of replication. The role of CDC6 in the pathogenesis of in diffuse larger B-cell lymphoma (DLBCL) remains unknown. We aim to investigate the effects of CDC6 on the proliferation, apoptosis and cell cycle regulation in DLBCL cells, delineate its underlying mechanism, and to correlate CDC6 expression with clinical characteristics and prognosis of patients with DLBCL. METHODS Initial bioinformatic analysis was performed to screen the potential role of CDC6 in DLBCL. Lentiviral constructs harboring CDC6 or shCDC6 was transfected to overexpress or knockdown CDC6 in SUDHL4 and OCI-LY7 cells. The cell proliferation was evaluated by CCK-8 assay, cell apoptosis was detected by Annexin-V APC/7-AAD double staining, and cell cycle was measured by flow cytometry. Real time quantitative PCR and western blot was used to characterize CDC6 expression and its downstream signaling pathways. The clinical data of DLBCL patients were retrospectively reviewed, the CDC6 expression in DLBCL or lymph node reactive hyperplasia tissues was evaluated by immunohistochemistry. RESULTS In silico data suggest that CDC6 overexpression is associated with inferior prognosis of DLBCL. We found that CDC6 overexpression increased SUDHL4 or OCI-LY7 cell proliferation, while knockdown of CDC6 inhibited cell proliferation in a time-dependent manner. Upon overexpression, CDC6 reduced cells in G1 phase and did not affect cell apoptosis; CDC6 knockdown led to significant cell cycle arrest in G1 phase and increase in cell apoptosis. Western blot showed that CDC6 inhibited the expression of INK4, E-Cadherin and ATR, accompanied by increased Bcl-2 and deceased Bax expression. The CDC6 protein was overexpressed DLBCL compared with lymph node reactive hyperplasia, and CDC6 overexpression was associated with non-GCB subtype, and conferred poor PFS and OS in patients with DLBCL. CONCLUSION CDC6 promotes cell proliferation and survival of DLBCL cells through regulation of G1/S cell cycle checkpoint and apoptosis. CDC6 is overexpressed and serves as a novel prognostic marker in DLBCL.
Collapse
Affiliation(s)
- Mingfang Shen
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Yunfeng Zhang
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Lun Tang
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Qinyan Fu
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China
| | - Jiawei Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Zhejiang, China
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Zhejiang, China
| | - Hui Zeng
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China.
| | - Yuan Li
- Department of Hematology, the First Hospital of Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
3
|
Zhai B, Zhang S, Li B, Zhang J, Yang X, Tan Y, Wang Y, Tan T, Yang X, Chen B, Tian Z, Cao Y, Huang Q, Gao J, Wang S, Zhang L. Dna2 removes toxic ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Nucleic Acids Res 2023; 51:7914-7935. [PMID: 37351599 PMCID: PMC10450173 DOI: 10.1093/nar/gkad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
During the repair of DNA double-strand breaks (DSBs), de novo synthesized DNA strands can displace the parental strand to generate single-strand DNAs (ssDNAs). Many programmed DSBs and thus many ssDNAs occur during meiosis. However, it is unclear how these ssDNAs are removed for the complete repair of meiotic DSBs. Here, we show that meiosis-specific depletion of Dna2 (dna2-md) results in an abundant accumulation of RPA and an expansion of RPA from DSBs to broader regions in Saccharomyces cerevisiae. As a result, DSB repair is defective and spores are inviable, although the levels of crossovers/non-crossovers seem to be unaffected. Furthermore, Dna2 induction at pachytene is highly effective in removing accumulated RPA and restoring spore viability. Moreover, the depletion of Pif1, an activator of polymerase δ required for meiotic recombination-associated DNA synthesis, and Pif1 inhibitor Mlh2 decreases and increases RPA accumulation in dna2-md, respectively. In addition, blocking DNA synthesis during meiotic recombination dramatically decreases RPA accumulation in dna2-md. Together, our findings show that meiotic DSB repair requires Dna2 to remove ssDNA-RPA filaments generated from meiotic recombination-associated DNA synthesis. Additionally, we showed that Dna2 also regulates DSB-independent RPA distribution.
Collapse
Affiliation(s)
- Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Beiyi Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyu Tian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Yanding Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Yang C, Xie N, Luo Z, Ruan X, Zhang Y, Wang W, Huang Y. The Effect of High CDC6 Levels on Predicting Poor Prognosis in Colorectal Cancer. Chemotherapy 2022; 67:47-56. [PMID: 35034031 DOI: 10.1159/000519913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We investigated the function of cell division cycle 6 (CDC6) on the prognosis in colorectal carcinoma (CRC). METHODS CDC6 protein expression levels in 121 patients with colorectal cancer and adjacent normal mucosa were detected by immunohistochemistry. RESULTS Compared to adjacent normal tissues, CDC6 mRNA level was overexpressed in CRC tissues. Moreover, CDC6 protein levels were expressed up to 93.39% (113/121) in CRC tissues in the cell nucleus or cytoplasm. However, there were only 5.79% (7/121) in normal mucosal tissues with nuclear expression. CDC6 expression was significantly correlated with TNM stage and tumor metastasis. The 5-year survival rate was lower in the high CDC6 expression group than the low group. After silencing of CDC6 expression in SW620 cells, cell proliferation was slowed, the tumor clones were decreased, and the cell cycle was arrested in G1 phase. In multivariate analysis, increased CDC6 protein expression levels in colon cancer tissues were associated with cancer metastasis, TNM stage, and patient survival time. CONCLUSION CDC6 is highly expressed in CRC, and downregulation of CDC6 can slow the growth of CRC cells in vitro. It is also an independent predictor for poor prognosis and may be a useful biomarker for targeted therapy and prognostic evaluation.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pathology, Hainan Medical University, Haikou, China.,Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Na Xie
- Department of Pathology, Hainan Medical University, Haikou, China.,Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhifei Luo
- Department of Pathology, Hainan Medical University, Haikou, China.,Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiling Ruan
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yixin Zhang
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weijiang Wang
- Department of Pathology, Hainan Medical University, Haikou, China
| | - Yousheng Huang
- Department of Pathology, Hainan Medical University, Haikou, China.,Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities. Genes (Basel) 2017; 8:genes8030105. [PMID: 28335524 PMCID: PMC5368709 DOI: 10.3390/genes8030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Collapse
|
6
|
Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mol Genet Genomics 2015; 290:2031-46. [PMID: 25957495 DOI: 10.1007/s00438-015-1051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.
Collapse
|
7
|
CHEN SANSAN, WAN PEI, DING WEN, LI FEI, HE CHENGWU, CHEN PENGLIANG, LI HONGWEI, HU ZHIMING, TAN WANLONG, LI JINLONG. Norcantharidin inhibits DNA replication and induces mitotic catastrophe by degrading initiation protein Cdc6. Int J Mol Med 2013; 32:43-50. [DOI: 10.3892/ijmm.2013.1359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
|
8
|
Feng CJ, Lu XW, Luo DY, Li HJ, Guo JB. Knockdown of Cdc6 inhibits proliferation of tongue squamous cell carcinoma Tca8113 cells. Technol Cancer Res Treat 2012; 12:173-81. [PMID: 22974333 DOI: 10.7785/tcrt.2012.500302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study aimed at evaluating the effects of Cdc6 downregulation on the proliferation of Tca8113 cells. Two lentiviral vectors (KD1 and KD2) expression cdc6 siRNA were constructed and then infected into Tca8113 cells. Real-time PCR and Western blot analysis were performed to detect the mRNA and protein expression of Cdc6. MTT assays were employed to delineate the growth curves, and flow cytometry was performed to assess cell-cycle progression and apoptosis in Tca8113 cells. Following infection with the lentiviral vectors, real-time PCR and Western blot analysis revealed that Cdc6 expression was markedly suppressed in Tca8113 cells. When compared with the negative control group, the mRNA expression of Cdc6 was reduced by 50% and 65% and the protein expression by 65.87% and 79.38% in cells harboring KD1 or KD2, respectively. Cell growth was slowed, and the growth inhibition rate was 25.84% and 30.34% in Tca8113 cells following infection with KD1 or KD2, respectively. In addition, cell-cycle progression was altered. In KD- infected Tca8113 cells, the proportion of cells in the S phase was markedly reduced, but the proportion in the G1 phase was significantly increased; this was accompanied by an increase in cell apoptosis. Downregulation of Cdc6 effectively inhibited the proliferation of Tca8113 cells.
Collapse
Affiliation(s)
- Chong-Jin Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China, 510080.
| | | | | | | | | |
Collapse
|
9
|
Narbonne-Reveau K, Lilly M. The Cyclin-dependent kinase inhibitor Dacapo promotes genomic stability during premeiotic S phase. Mol Biol Cell 2009; 20:1960-9. [PMID: 19211840 DOI: 10.1091/mbc.e08-09-0916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21(Cip1)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap(-/-) females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap(-/-) ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap(-/-) DNA damage phenotype. Importantly, the DNA damage observed in dap(-/-) ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap(-/-) ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.
Collapse
Affiliation(s)
- Karine Narbonne-Reveau
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
10
|
Holt LJ, Hutti JE, Cantley LC, Morgan DO. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 2007; 25:689-702. [PMID: 17349956 PMCID: PMC1939968 DOI: 10.1016/j.molcel.2007.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 01/14/2007] [Accepted: 02/15/2007] [Indexed: 11/20/2022]
Abstract
Progression through meiosis in yeast is governed by the cyclin-dependent kinase Cdk1, in concert with a related kinase called Ime2. It remains unclear how these kinases collaborate to meet the unique demands of meiotic progression. We demonstrate that Ime2 and Cdk1 phosphorylate an overlapping substrate set and that the two kinases overlap functionally as inhibitors of the ubiquitin ligase APC(Cdh1) and replication origin licensing. Surprisingly, Ime2 phosphorylates Cdk1 substrates at distinct phosphorylation sites that are highly resistant to dephosphorylation by the phosphatase Cdc14. We propose that Ime2-dependent phosphorylation of a subset of cell-cycle proteins limits the effects of Cdc14 in meiosis.
Collapse
Affiliation(s)
- Liam J. Holt
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA
| | - Jessica E. Hutti
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Lewis C. Cantley
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - David O. Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA
| |
Collapse
|
11
|
Mori S, Shirahige K. Perturbation of the activity of replication origin by meiosis-specific transcription. J Biol Chem 2006; 282:4447-4452. [PMID: 17170106 DOI: 10.1074/jbc.m609671200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the activity of all ARSs on the Saccharomyces cerevisiae chromosome VI as chromosomal replication origins in premeiotic S-phase by neutral/neutral two-dimensional gel electrophoresis. The comparison of origin activity of each origin in mitotic and premeiotic S-phase showed that one of the most efficient origins in mitotic S-phase, ARS605, was completely inhibited in premeiotic S-phase. ARS605 is located within the open reading frame of MSH4 gene that is transcribed specifically during an early stage of meiosis. Systematic analysis of relationships between MSH4 transcription and ARS605 origin activity revealed that transcription of MSH4 inhibited the ARS605 origin activity by removing origin recognition complex from ARS605. Deletion of UME6, a transcription factor responsible for repressing MSH4 during mitotic S-phase, resulted in inactivation of ARS605 in mitosis. Our finding is the first demonstration that the transcriptional regulation on the replication origin activity is related to changes in cell physiology. These results may provide insights into changes in replication origin activity in embryonic cell cycle during early developmental stages.
Collapse
Affiliation(s)
- Saori Mori
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan and
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Division for Gene Research, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama City, Kanagawa 226-8501, Japan.
| |
Collapse
|
12
|
Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J, Stuart D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 2006; 399:151-60. [PMID: 16776651 PMCID: PMC1570159 DOI: 10.1042/bj20060363] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.
Collapse
Affiliation(s)
- Chantelle Sedgwick
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Rawluk
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Decesare
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Sheetal Raithatha
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Wohlschlegel
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - Paul Semchuk
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - Michael Ellison
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - John Yates
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - David Stuart
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 2006; 27:398-426. [PMID: 16543383 DOI: 10.1210/er.2005-0017] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Meiosis is a double-division process that is preceded by only one DNA replication event to produce haploid gametes. The defining event in meiosis is prophase I, during which chromosome pairs locate each other, become physically connected, and exchange genetic information. Although many aspects of this process have been elucidated in lower organisms, there has been scant information available until now about the process in mammals. Recent advances in genetic analysis, especially in mice and humans, have revealed many genes that play essential roles in meiosis in mammals. These include cell cycle-regulatory proteins that couple the exit from the premeiotic DNA synthesis to the progression through prophase I, the chromosome structural proteins involved in synapsis, and the repair and recombination proteins that process the recombination events. Failure to adequately repair the DNA damage caused by recombination triggers meiotic checkpoints that result in ablation of the germ cells by apoptosis. These analyses have revealed surprising sexual dimorphism in the requirements of different gene products and a much less stringent checkpoint regulation in females. This may provide an explanation for the 10-fold increase in meiotic errors in females compared with males. This review provides a comprehensive analysis of the use of genetic manipulation, particularly in mice, but also of the analysis of mutations in humans, to elucidate the mechanisms that are required for traverse through prophase I.
Collapse
Affiliation(s)
- P E Cohen
- Department of Molecular Genetics, Center for the Study of Reproduction and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Valentin G, Schwob E, Della Seta F. Dual role of the Cdc7-regulatory protein Dbf4 during yeast meiosis. J Biol Chem 2005; 281:2828-34. [PMID: 16319063 DOI: 10.1074/jbc.m510626200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dbf4-dependent Cdc7 kinase (DDK) is essential for chromosome duplication in all eukaryotes, but was proposed to be dispensable for yeast pre-meiotic DNA replication. This discrepancy led us to investigate the role of the unstable Cdc7-regulatory protein Dbf4 in meiosis. We show that, when Dbf4 is depleted at the time of meiotic induction, cells enter the meiotic program but do not replicate their chromosomes. Surprisingly when Dbf4 is depleted after the initiation of DNA synthesis, S phase goes to completion, but most cells arrest before anaphase I. Deletion of the cohesin Rec8 suppresses this phenotype, suggesting a distinct role of DDK for meiotic chromosome segregation. As after Cdc5 depletion, a fraction of cells undergo a single equational division suggesting a failure to mono-orient sister kinetochores. Our results demonstrate that Dbf4 is essential for DNA replication during meiosis like in vegetative cells and provide evidence for an additional role in setting up the reductional division of meiosis I.
Collapse
Affiliation(s)
- Guillaume Valentin
- Institute of Molecular Genetics and Université Montpellier II, CNRS UMR5535-1919, Route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
15
|
Purnapatre K, Gray M, Piccirillo S, Honigberg SM. Glucose inhibits meiotic DNA replication through SCFGrr1p-dependent destruction of Ime2p kinase. Mol Cell Biol 2005; 25:440-50. [PMID: 15601864 PMCID: PMC538797 DOI: 10.1128/mcb.25.1.440-450.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the cell division cycle and sporulation are mutually exclusive cell fates; glucose, which stimulates the cell division cycle, is a potent inhibitor of sporulation. Addition of moderate concentrations of glucose (0.5%) to sporulation medium did not inhibit transcription of two key activators of sporulation, IME1 and IME2, but did increase levels of Sic1p, a cyclin-dependent kinase inhibitor, resulting in a block to meiotic DNA replication. The effects of glucose on Sic1p levels and DNA replication required Grr1p, a component of the SCF(Grr1p) ubiquitin ligase. Sic1p is negatively regulated by Ime2p kinase, and several observations indicate that glucose inhibits meiotic DNA replication through SCF(Grr1p)-mediated destruction of this kinase. First, Ime2p was destabilized in the presence of glucose, and this turnover required Grr1p, a second component of SCF(Grr1p), Cdc53p, and an SCF(Grr1p)-associated E2 enzyme, Cdc34p. Second, Ime2p-ubiquitin conjugates were detected under conditions of rapid Ime2p turnover, and conjugation of Ime2p to ubiquitin required GRR1. Third, a mutant form of Ime2p (Ime2(DeltaPEST)), in which a putative Grr1p-interacting sequence was deleted, was more stable than wild-type Ime2p. Finally, expression of the IME2(DeltaPEST) allele bypassed the block to meiotic DNA replication caused by 0.5% glucose. In addition, Grr1p is required for later events in sporulation independently of its role in Ime2p turnover.
Collapse
Affiliation(s)
- Kedar Purnapatre
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Road., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Meiosis is the type of cell division that gives rise to eggs and sperm. Errors in the execution of this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Here, we review recent findings on how cell-cycle controls ensure the coordination of meiotic events, with a particular focus on the segregation of chromosomes.
Collapse
Affiliation(s)
- Adèle L Marston
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|