1
|
Tecle E, Warushavithana P, Li S, Blanchard MJ, Chhan CB, Bui T, Underwood RS, Bakowski MA, Troemel ER, Lažetić V. Conserved chromatin regulators control the transcriptional immune response to intracellular pathogens in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011444. [PMID: 40193347 PMCID: PMC11975079 DOI: 10.1371/journal.pgen.1011444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Robust transcriptional responses are critical for defense against infection. However, unrestrained immune responses can cause negative impacts such as damaging inflammation and slowed development. Here, we find that a class of transcriptional regulators previously associated with regulation of development in Caenorhabditis elegans, is also involved in repressing immune responses. Specifically, through forward genetics, we find that loss of lin-15B leads to constitutive expression of Intracellular Pathogen Response (IPR) genes. lin-15B encodes a transcriptional repressor with a conserved THAP domain that is associated with the DRM chromatin remodeling complex that regulates C. elegans development. We show that lin-15B mutants have increased resistance to natural intracellular pathogens, and the induction of IPR genes in lin-15B mutants relies on the MES-4 histone methyltransferase. We extend our analyses to other DRM and NuRD chromatin remodeling factors, as well as SUMOylation histone modifiers, showing that a broad range of chromatin-related factors can repress IPR gene expression. Altogether these findings suggest that conserved chromatin regulators may facilitate development in part by repressing damaging immune responses against intracellular pathogens.
Collapse
Affiliation(s)
- Eillen Tecle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Paaramitha Warushavithana
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Samuel Li
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Michael J. Blanchard
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal B. Chhan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ryan S. Underwood
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Malina A. Bakowski
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vladimir Lažetić
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| |
Collapse
|
2
|
Electrophysiology of the rhythmic defecation program in nematode Heterorhabditis megidis. Sci Rep 2017; 7:17834. [PMID: 29259280 PMCID: PMC5736584 DOI: 10.1038/s41598-017-18118-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/06/2017] [Indexed: 11/08/2022] Open
Abstract
The nervous system controls most rhythmic behaviors, with a remarkable exception. In Caenorhabditis elegans periodic defecation rhythm does not appear to involve the nervous system. Such oscillations are studied in detail with genetic and molecular biology tools. The small size of C. elegans cells impairs the use of standard electrophysiological methods. We studied a similar rhythmic pacemaker in the noticeably larger gut cells of Heterorhabditis megidis nematode. H. megidis defecation cycle is driven by a central pattern generator (CPG) associated with unusual all-or-none hyper-polarization “action potential”. The CPG cycle period depends on the membrane potential and CPG cycling also persisted in experiments where the membrane potential of gut cells was continuously clamped at steady voltage levels. The usual excitable tissue description does not include the endoderm or imply the generation of hyper-polarization spikes. The nematode gut cells activity calls for a reevaluation of the excitable cells definition.
Collapse
|
3
|
Kroetz MB, Zarkower D. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts. G3 (BETHESDA, MD.) 2015; 5:2831-41. [PMID: 26497144 PMCID: PMC4683654 DOI: 10.1534/g3.115.022517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023]
Abstract
The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent.
Collapse
Affiliation(s)
- Mary B Kroetz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Zarkower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
4
|
Zou CG, Tu Q, Niu J, Ji XL, Zhang KQ. The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLoS Pathog 2013; 9:e1003660. [PMID: 24146615 PMCID: PMC3798571 DOI: 10.1371/journal.ppat.1003660] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/10/2013] [Indexed: 11/19/2022] Open
Abstract
The Caenorhabditis elegans DAF-16 transcription factor is critical for diverse biological processes, particularly longevity and stress resistance. Disruption of the DAF-2 signaling cascade promotes DAF-16 activation, and confers resistance to killing by pathogenic bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. However, daf-16 mutants exhibit similar sensitivity to these bacteria as wild-type animals, suggesting that DAF-16 is not normally activated by these bacterial pathogens. In this report, we demonstrate that DAF-16 can be directly activated by fungal infection and wounding in wild-type animals, which is independent of the DAF-2 pathway. Fungal infection and wounding initiate the Gαq signaling cascade, leading to Ca(2+) release. Ca(2+) mediates the activation of BLI-3, a dual-oxidase, resulting in the production of reactive oxygen species (ROS). ROS then activate DAF-16 through a Ste20-like kinase-1/CST-1. Our results indicate that DAF-16 in the epidermis is required for survival after fungal infection and wounding. Thus, the EGL-30-Ca(2+)-BLI-3-CST-1-DAF-16 signaling represents a previously unknown pathway to regulate epidermal damage response.
Collapse
Affiliation(s)
- Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| | - Qiu Tu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jie Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| |
Collapse
|
5
|
An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans. PLoS One 2012; 7:e48768. [PMID: 23251335 PMCID: PMC3520999 DOI: 10.1371/journal.pone.0048768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/04/2012] [Indexed: 01/17/2023] Open
Abstract
Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.
Collapse
|
6
|
Oh WC, Song HO, Cho JH, Park BJ. ANK repeat-domain of SHN-1 Is indispensable for in vivo SHN-1 function in C. elegans. Mol Cells 2011; 31:79-84. [PMID: 21191812 PMCID: PMC3906869 DOI: 10.1007/s10059-011-0007-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 11/27/2022] Open
Abstract
Shank protein is one of the postsynaptic density (PSD) proteins which play a major role in proper localization of proteins at membranes. The shn-1, a homolog of Shank in Caenorhabditis elegans, is expressed in neurons, pharynx, intestine, vulva and sperm. We have previously reported a possible genetic interaction between Shank and IP₃ receptor by examining shn-1 RNAi in IP₃ receptor (itr-1) mutant background. In order to show the direct interaction of Shank and IP₃ receptor as well as to show the direct in vivo function of Shank, we have characterized two different mutant alleles of shn-1, which have different deletions in the different domains. shn-1 mutants were observed for Ca²+-related behavioral defects with itr-1 mutants. We found that only shn-1 mutant defective in ANK repeat-domain showed significant defects in defecation, pharyngeal pumping and fertility. In addition, we found that shn-1 regulates defecation, pharyngeal pumping and probably male fertility with itr-1. Thus, we suggest that Shank ANK repeat-domain along with PDZ may play a crucial role in regulating Ca²+-signaling with IP₃ receptor.
Collapse
Affiliation(s)
- Won Chan Oh
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
- Present address: Center for Neuroscience, Cell and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Hyun-Ok Song
- Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Jeong Hoon Cho
- Division of Biology Education, College of Education, Chosun University, Gwangju 501-759, Korea
| | - Byung-Jae Park
- Department of Life Science, Hallym University, Chunchon 200-702, Korea
- Institute of Bioscience and Biotechnolgoy, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
7
|
Cho JH, Song HO, Singaravelu G, Sung H, Oh WC, Kwon S, Kim DH, Ahnn J. Pleiotropic roles of calumenin (calu-1), a calcium-binding ER luminal protein, inCaenorhabditis elegans. FEBS Lett 2009; 583:3050-6. [DOI: 10.1016/j.febslet.2009.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|
8
|
Cram EJ, Shang H, Schwarzbauer JE. A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J Cell Sci 2006; 119:4811-8. [PMID: 17090602 DOI: 10.1242/jcs.03274] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell migration is essential during embryonic development and tissue morphogenesis. During gonadogenesis in the nematode Caenorhabditis elegans, migration of the distal tip cells forms two U-shaped gonad arms. Malformation results if the distal tip cells stop prematurely or follow an aberrant path, and abnormalities are easily visualized in living nematodes. Here we describe the first comprehensive in vivo RNA interference screen for genes required for cell migration. In this non-biased screen, we systematically analyzed 16,758 RNA-interference depletion experiments by light microscopy and identified 99 genes required for distal tip cell migration. Genetic and physical interaction data connect 59 of these genes to form a cell migration gene network that defines distal tip cell migration in vivo.
Collapse
Affiliation(s)
- Erin J Cram
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
9
|
Chesney MA, Kidd AR, Kimble J. gon-14 functions with class B and class C synthetic multivulva genes to control larval growth in Caenorhabditis elegans. Genetics 2006; 172:915-28. [PMID: 16322520 PMCID: PMC1383727 DOI: 10.1534/genetics.105.048751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 11/09/2005] [Indexed: 12/11/2022] Open
Abstract
Previous work showed that C. elegans gon-14 is required for gonadogenesis. Here we report that gon-14 encodes a protein with similarity to LIN-15B, a class B synMuv protein. An extensive region of GON-14 contains blocks of sequence similarity to transposases of the hAT superfamily, but key residues are not conserved, suggesting a distant relationship. GON-14 also contains a putative THAP DNA-binding domain. A rescuing gon-14::GON-14::VENUS reporter is broadly expressed during development and localizes to the nucleus. Strong loss-of-function and predicted null gon-14 alleles have pleiotropic defects, including multivulval (Muv) defects and temperature-sensitive larval arrest. Although the gon-14 Muv defect is not enhanced by synMuv mutations, gon-14 interacts genetically with class B and class C synMuv genes, including lin-35/Rb, let-418/Mi-2beta, and trr-1/TRRAP. The gon-14; synMuv double mutants arrest as larvae when grown under conditions supporting development to adulthood for the respective single mutants. The gon-14 larval arrest is suppressed by loss of mes-2/E(Z), mes-6/ESC, or mes-4, which encodes a SET domain protein. Additionally, gon-14 affects expression of pgl-1 and lag-2, two genes regulated by the synMuv genes. We suggest that gon-14 functions with class B and class C synMuv genes to promote larval growth, in part by antagonizing MES-2,3,6/ESC-E(z) and MES-4.
Collapse
Affiliation(s)
- Michael A Chesney
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
10
|
Abstract
A current challenge in neuroscience is to bridge the gaps between genes, proteins, neurons, neural circuits, and behavior in a single animal model. The nematode Caenorhabditis elegans has unique features that facilitate this synthesis. Its nervous system includes exactly 302 neurons, and their pattern of synaptic connectivity is known. With only five olfactory neurons, C. elegans can dynamically respond to dozens of attractive and repellent odors. Thermosensory neurons enable the nematode to remember its cultivation temperature and to track narrow isotherms. Polymodal sensory neurons detect a wide range of nociceptive cues and signal robust escape responses. Pairing of sensory stimuli leads to long-lived changes in behavior consistent with associative learning. Worms exhibit social behaviors and complex ultradian rhythms driven by Ca(2+) oscillators with clock-like properties. Genetic analysis has identified gene products required for nervous system function and elucidated the molecular and neural bases of behaviors.
Collapse
Affiliation(s)
- Mario de Bono
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
11
|
Banerjee S, Hasan G. The InsP3 receptor: its role in neuronal physiology and neurodegeneration. Bioessays 2005; 27:1035-47. [PMID: 16163728 DOI: 10.1002/bies.20298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The InsP3 receptor is a ligand-gated channel that releases Ca2+ from intracellular stores in a variety of cell types, including neurons. Genetic studies from vertebrate and invertebrate model systems suggest that coordinated rhythmic motor functions are most susceptible to changes in Ca2+ release from the InsP3 receptor. In many cases, the InsP3 receptor interacts with other signaling mechanisms that control levels of cytosolic Ca2+, suggesting that the maintenance of Ca2+ homeostasis in normal cells could be controlled by the activity of the InsP3R. In support of this idea, recent studies show that altered InsP3 receptor activity can be partially responsible for Ca2+ dyshomeostasis seen in many neurodegenerative conditions. These observations open new avenues for carrying out genetic and drug screens that target InsP3R function in neurodegenerative conditions.
Collapse
Affiliation(s)
- Santanu Banerjee
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India.
| | | |
Collapse
|