1
|
Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat Commun 2016; 7:10393. [PMID: 26804021 PMCID: PMC4737732 DOI: 10.1038/ncomms10393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body 'knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing.
Collapse
|
2
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
3
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
4
|
Santosa V, Martha S, Hirose N, Tanaka K. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication. J Biol Chem 2013; 288:6864-80. [PMID: 23322785 DOI: 10.1074/jbc.m112.432393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.
Collapse
Affiliation(s)
- Venny Santosa
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | | | | |
Collapse
|
5
|
Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, Song JH, Takahashi TS, Nakagawa T, Shirahige K, Masukata H. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev 2012; 26:2050-62. [PMID: 22987637 DOI: 10.1101/gad.194282.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.
Collapse
Affiliation(s)
- Atsutoshi Tazumi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 2012; 31:2182-94. [PMID: 22433840 DOI: 10.1038/emboj.2012.68] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/27/2012] [Indexed: 12/31/2022] Open
Abstract
The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.
Collapse
Affiliation(s)
- Mai Kanke
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
7
|
Taylor M, Moore K, Murray J, Aves SJ, Price C. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst) 2011; 10:1154-63. [PMID: 21945095 DOI: 10.1016/j.dnarep.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022]
Abstract
Initiation of DNA replication in eukaryotes is a highly conserved and ordered process involving the co-ordinated, stepwise association of distinct proteins at multiple origins of replication throughout the genome. Here, taking Schizosaccharomyces pombe as a model, the role of Rad4(TopBP1) in the assembly of the replication complex has been examined. Quantitative chromatin immunoprecipitation experiments confirm that Rad4(TopBP1) associates with origins of DNA replication and, in addition, demonstrate that the protein is not present within the active replisome. A direct interaction between Rad4(TopBP1) and Mcm10 is shown and this is reflected in the Rad4(TopBP1)-dependent origin association of Mcm10. Rad4(TopBP1) is also shown to interact with Sld2 and Sld3 and to be required for the stable origin association of these two proteins. Rad4(TopBP1) chromatin association at stalled replication forks was found to be dependent upon the checkpoint protein Rad9, which was not required for Rad4(TopBP1) origin association. Comparison of the levels of chromatin association at origins of replication and stalled replication forks and the differential requirement for Rad9 suggest functional differences for Rad4(TopBP1) at these distinct sites.
Collapse
Affiliation(s)
- Mark Taylor
- School of Health and Medicine, Division of Biomedical and Life Sciences, Biological Sciences Building, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
8
|
Fukuura M, Nagao K, Obuse C, Takahashi TS, Nakagawa T, Masukata H. CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast. Mol Biol Cell 2011; 22:2620-33. [PMID: 21593208 PMCID: PMC3135486 DOI: 10.1091/mbc.e10-12-0995] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Study of the essential roles of CDK in initiation of DNA replication in fission yeast indicates that CDK phosphorylates Sld3 and Drc1/Sld2 and promotes their interactions with Cut5, which are required for origin loading of Cut5. Thus CDK regulates assembly of replication factors onto origins by promoting ternary Sld3–Cut5–Drc1 complex formation. Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fission yeast. Phosphorylation of Sld3 was found to be dependent on CDK in S phase. Alanine substitutions at CDK sites decreased the interaction with Cut5/Dpb11 at the N-terminal BRCT motifs and decreased the loading of Cut5 onto replication origins. This defect was suppressed by overexpression of drc1+. Phosphorylation of a conserved CDK site, Thr-111, in Drc1 was critical for interaction with Cut5 at the C-terminal BRCT motifs and was required for loading of Cut5. In a yeast three-hybrid assay, Sld3, Cut5, and Drc1 were found to form a ternary complex dependent on the CDK sites of Sld3 and Drc1, and Drc1–Cut5 binding enhanced the Sld3–Cut5 interaction. These results show that the mechanism of CDK-dependent loading of Cut5 is conserved in fission yeast in a manner similar to that elucidated in budding yeast.
Collapse
|
9
|
Kanke M, Nishimura K, Kanemaki M, Kakimoto T, Takahashi TS, Nakagawa T, Masukata H. Auxin-inducible protein depletion system in fission yeast. BMC Cell Biol 2011; 12:8. [PMID: 21314938 PMCID: PMC3048574 DOI: 10.1186/1471-2121-12-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 02/11/2011] [Indexed: 01/03/2023] Open
Abstract
Background Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. Results We constructed an auxin-inducible degron (AID) system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID), and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system), we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. Conclusion Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.
Collapse
Affiliation(s)
- Mai Kanke
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Matsumoto S, Shimmoto M, Kakusho N, Yokoyama M, Kanoh Y, Hayano M, Russell P, Masai H. Hsk1 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission yeast. Cell Cycle 2010; 9:4627-37. [PMID: 21099360 DOI: 10.4161/cc.9.23.13937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1(Chk2/Rad53) through the Rad3(ATR/Mec1)-Mrc1(Claspin) pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 2010; 24:1208-19. [PMID: 20551170 DOI: 10.1101/gad.1933010] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosome replication occurs precisely once during the cell cycle of almost all eukaryotic cells, and is a highly complex process that is still understood relatively poorly. Two conserved kinases called Cdc7 (cell division cycle 7) and cyclin-dependent kinase (CDK) are required to establish replication forks during the initiation of chromosome replication, and a key feature of this process is the activation of the replicative DNA helicase in situ at each origin of DNA replication. A series of recent studies has shed new light on the targets of Cdc7 and CDK, indicating that chromosome replication probably initiates by a fundamentally similar mechanism in all eukaryotes.
Collapse
Affiliation(s)
- Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom.
| |
Collapse
|
12
|
Abstract
Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.
Collapse
Affiliation(s)
- Helmut Pospiech
- Leibniz Institute for Age Research - Fritz Lipmann Institute, D-07745 Jena, Germany
| | | | | |
Collapse
|
13
|
The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 2009; 11:357-62. [PMID: 19182789 DOI: 10.1038/ncb1845] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 11/04/2008] [Indexed: 12/15/2022]
Abstract
Heterochromatin is a structurally compacted region of chromosomes in which transcription and recombination are inactivated. DNA replication is temporally regulated in heterochromatin, but the molecular mechanism for regulation has not been elucidated. Among heterochromatin loci in Schizosaccharomyces pombe, the pericentromeric region and the silent mating-type (mat) locus replicate in early S phase, whereas the sub-telomeric region does not, suggesting complex mechanisms for regulation of replication in heterochromatic regions. Here, we show that Swi6, an S. pombe counterpart of heterochromatin protein 1 (HP1), is required for early replication of the pericentromeric region and the mat locus. Origin-loading of Sld3, which depends on Dfp1/Dbf4-dependent kinase Cdc7 (DDK), is stimulated by Swi6. An HP1-binding motif within Dfp1 is required for interaction with Swi6 in vitro and for early replication of the pericentromeric region and mat locus. Tethering of Dfp1 to the pericentromeric region and mat locus in swi6-deficient cells restores early replication of these loci. Our results show that a heterochromatic protein positively regulates initiation of replication in silenced chromatin by interacting with an essential kinase.
Collapse
|
14
|
Rapp JB, Ansbach AB, Noguchi C, Noguchi E. Chromatin immunoprecipitation of replication factors moving with the replication fork. Methods Mol Biol 2009; 521:191-202. [PMID: 19563107 PMCID: PMC3571701 DOI: 10.1007/978-1-60327-815-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization of each replication factor. Here we describe a chromatin immunoprecipitation (ChIP) method to locate a replication factor at the replication fork. Defining the localization of replication proteins should provide important insight into mechanistic understanding of the regulation of the DNA replication process.
Collapse
Affiliation(s)
- Jordan B Rapp
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
15
|
Siam R, Gómez EB, Forsburg SL. Schizosaccharomyces pombe Rad4/Cut5 protein modification and chromatin binding changes in DNA damage. DNA Cell Biol 2007; 26:565-75. [PMID: 17688408 DOI: 10.1089/dna.2007.0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Schizosaccharomyces pombe Rad4/Cut5 protein is essential for DNA replication and checkpoint control. We have analyzed the behavior of the protein during unperturbed DNA replication, in different replication and checkpoint mutant backgrounds and in response to DNA-damaging agents. In an unperturbed cell cycle, Rad4 is chromatin bound and the mobility of the protein is not altered. Rad4 protein level and thus chromatin binding are dependent on a functional DNA polymerase epsilon. In response to replication arrest and DNA damage, the protein is modified in a Rad3-dependent manner. These data indicate that Rad4 undergoes diverse forms of regulation that are distinct in both DNA replication and checkpoint response.
Collapse
Affiliation(s)
- Rania Siam
- Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, California, USA
| | | | | |
Collapse
|
16
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R. A. Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| | - T. M. Holzen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| |
Collapse
|
17
|
Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J 2006; 25:4663-74. [PMID: 16990792 PMCID: PMC1589995 DOI: 10.1038/sj.emboj.7601347] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/18/2006] [Indexed: 12/31/2022] Open
Abstract
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.
Collapse
Affiliation(s)
- Hayato Yabuuchi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tomonori Uchida
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
18
|
Nitani N, Nakamura KI, Nakagawa C, Masukata H, Nakagawa T. Regulation of DNA replication machinery by Mrc1 in fission yeast. Genetics 2006; 174:155-65. [PMID: 16849602 PMCID: PMC1569812 DOI: 10.1534/genetics.106.060053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Faithful replication of chromosomes is crucial to genome integrity. In yeast, the ORC binds replication origins throughout the cell cycle. However, Cdc45 binds these before S-phase, and, during replication, it moves along the DNA with MCM helicase. When replication progression is inhibited, checkpoint regulation is believed to stabilize the replication fork; the detailed mechanism, however, remains unclear. To examine the relationship between replication initiation and elongation defects and the response to replication elongation block, we used fission yeast mutants of Orc1 and Cdc45--orp1-4 and sna41-928, respectively--at their respective semipermissive temperatures with regard to BrdU incorporation. Both orp1 and sna41 cells exhibited HU hypersensitivity in the absence of Chk1, a DNA damage checkpoint kinase, and were defective in full activation of Cds1, a replication checkpoint kinase, indicating that normal replication is required for Cds1 activation. Mrc1 is required to activate Cds1 and prevent the replication machinery from uncoupling from DNA synthesis. We observed that, while either the orp1 or the sna41 mutation partially suppressed HU sensitivity of cds1 cells, sna41 specifically suppressed that of mrc1 cells. Interestingly, sna41 alleviated the defect in recovery from HU arrest without increasing Cds1 activity. In addition to sna41, specific mutations of MCM suppressed the HU sensitivity of mrc1 cells. Thus, during elongation, Mrc1 may negatively regulate Cdc45 and MCM helicase to render stalled forks capable of resuming replication.
Collapse
Affiliation(s)
- Naoki Nitani
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
19
|
Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 2006; 103:10236-10241. [PMID: 16798881 PMCID: PMC1482467 DOI: 10.1073/pnas.0602400103] [Citation(s) in RCA: 547] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protein Cdc45 plays a critical but poorly understood role in the initiation and elongation stages of eukaryotic DNA replication. To study Cdc45's function in DNA replication, we purified Cdc45 protein from Drosophila embryo extracts by a combination of traditional and immunoaffinity chromatography steps and found that the protein exists in a stable, high-molecular-weight complex with the Mcm2-7 hexamer and the GINS tetramer. The purified Cdc45/Mcm2-7/GINS complex is associated with an active ATP-dependent DNA helicase function. RNA interference knock-down experiments targeting the GINS and Cdc45 components establish that the proteins are required for the S phase transition in Drosophila cells. The data suggest that this complex forms the core helicase machinery for eukaryotic DNA replication.
Collapse
Affiliation(s)
- Stephen E Moyer
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Peter W Lewis
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
20
|
Kanemaki M, Labib K. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J 2006; 25:1753-63. [PMID: 16601689 PMCID: PMC1440835 DOI: 10.1038/sj.emboj.7601063] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 03/06/2006] [Indexed: 01/16/2023] Open
Abstract
The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre-RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in budding yeast, the Sld3 protein and the GINS complex. Previous studies suggested that Sld3 is also important for the progression of DNA replication forks after the initiation step, as are Cdc45 and GINS. In contrast, we show here that Sld3 does not move with DNA replication forks and only associates with MCM in an unstable manner before initiation. After the establishment of DNA replication forks from early origins, Sld3 is no longer essential for the completion of chromosome replication. Unlike Sld3, GINS is not required for the initial recruitment of Cdc45 to origins and instead is necessary for stable engagement of Cdc45 with the nascent replisome. Like Cdc45, GINS then associates stably with MCM during S-phase.
Collapse
Affiliation(s)
- Masato Kanemaki
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. Tel.: +44 161 446 8168; Fax: +44 161 446 3109; E-mail:
| |
Collapse
|
21
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
22
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2005. [PMID: 15773059 PMCID: PMC7169799 DOI: 10.1002/yea.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly‐published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals ‐ search completed 10th. Nov. 2004)
Collapse
|