1
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
3
|
Weidemann DE, Singh A, Grima R, Hauf S. The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-Poissonian. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531283. [PMID: 36945401 PMCID: PMC10028819 DOI: 10.1101/2023.03.06.531283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stochastic variation in gene products ("noise") is an inescapable by-product of gene expression. Noise must be minimized to allow for the reliable execution of cellular functions. However, noise cannot be suppressed beyond an intrinsic lower limit. For constitutively expressed genes, this limit is believed to be Poissonian, meaning that the variance in mRNA numbers cannot be lower than their mean. Here, we show that several cell division genes in fission yeast have mRNA variances significantly below this limit, which cannot be explained by the classical gene expression model for low-noise genes. Our analysis reveals that multiple steps in both transcription and mRNA degradation are essential to explain this sub-Poissonian variance. The sub-Poissonian regime differs qualitatively from previously characterized noise regimes, a hallmark being that cytoplasmic noise is reduced when the mRNA export rate increases. Our study re-defines the lower limit of eukaryotic gene expression noise and identifies molecular requirements for ultra-low noise which are expected to support essential cell functions.
Collapse
Affiliation(s)
- Douglas E Weidemann
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Oda AH, Tamura M, Kaneko K, Ohta K, Hatakeyama TS. Autotoxin-mediated latecomer killing in yeast communities. PLoS Biol 2022; 20:e3001844. [PMID: 36342925 PMCID: PMC9639812 DOI: 10.1371/journal.pbio.3001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular adaptation to stressful environments such as starvation is essential to the survival of microbial communities, but the uniform response of the cell community may lead to entire cell death or severe damage to their fitness. Here, we demonstrate an elaborate response of the yeast community against glucose depletion, in which the first adapted cells kill the latecomer cells. During glucose depletion, yeast cells release autotoxins, such as leucic acid and L-2keto-3methylvalerate, which can even kill the clonal cells of the ones producing them. Although these autotoxins were likely to induce mass suicide, some cells differentiated to adapt to the autotoxins without genetic changes. If nondifferentiated latecomers tried to invade the habitat, autotoxins damaged or killed the latecomers, but the differentiated cells could selectively survive. Phylogenetically distant fission and budding yeast shared this behavior using the same autotoxins, suggesting that latecomer killing may be the universal system of intercellular communication, which may be relevant to the evolutional transition from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Arisa H. Oda
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- * E-mail: (AHO); (TSH)
| | - Miki Tamura
- Department of Basic Science, University of Tokyo, Tokyo, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kunihiro Ohta
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
5
|
Analysis of the Plasmid-Based ts Allele of PA0006 Reveals Its Function in Regulation of Cell Morphology and Biosynthesis of Core Lipopolysaccharide in Pseudomonas aeruginosa. Appl Environ Microbiol 2022; 88:e0048022. [PMID: 35762790 PMCID: PMC9317947 DOI: 10.1128/aem.00480-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Over 300 essential genes are predicted using transposon sequencing in the genome of Pseudomonas aeruginosa. However, methods for reverse genetic analysis of essential genes are scarce. To address this issue, we developed a three-step protocol consisting of integration of deletion plasmid, introduction of temperature-sensitive rescue plasmid, and excision of integrated-deletion plasmid to construct the plasmid-based temperature-sensitive allele of essential genes. Using PA0006 as an example, we showed that PA0006(Ts) exhibited wild-type cell morphology at permissive temperature but filamentous form at restrictive temperatures. We further showed that the glycerol-mannoheptose-bisphosphate phosphatase GmhB in Escherichia coli shared 32.4% identity with that of PA0006p and functionally complemented the defect of PA0006(Ts) at 42°C. SDS-PAGE and Western blotting indicated the presence and absence of the complete core lipopolysaccharide (LPS) and B-band O-antigen in PA0006(Ts) at 30 and 42°C, respectively. An isolated suppressor sup displayed wild-type-like cell morphology but no complete core LPS or O-antigen. Genome resequencing together with comparative transcriptomic profiling identified a candidate suppressor fructose-bisphosphate phosphatase in which the promoter harbored a SNP and the transcription level was not downregulated at 42°C compared to 30°C in sup. It was further validated that fbp overexpression suppressed the lethality of PA0006(Ts) at 42°C. Taken together, our results demonstrate that PA0006 plays a role in regulation of cell morphology and biosynthesis of core LPS. This three-step protocol for construction of conditional lethal allele in P. aeruginosa should be widely applicable for genetic analysis of other essential genes of interest, including analysis of bypass suppressibility. IMPORTANCE Microbial essential genes encode nondispensable function for cell growth and therefore are ideal targets for the development of new drugs. Essential genes are readily identified using transposon-sequencing technology at the genome scale. However, genetic analysis of essential genes of interest was hampered by limited methodologies. To address this issue, we developed a three-step protocol for construction of conditional allele of essential genes in the opportunistic pathogen Pseudomonas aeruginosa. Using PA0006 as an example, we demonstrated that the plasmid-based PA0006(Ts) mutant exhibited defects in regulation of cell morphology, formation of intact core LPS, and attachment of the O-antigen at restrictive temperatures but not at permissive temperatures. A suppressor of PA0006(Ts) was isolated through spontaneous mutations and showed restored cell morphology but not core oligosaccharide or O-antigen. This method should be widely applicable for phenotype and suppressibility analyses of other essential genes of interest in P. aeruginosa.
Collapse
|
6
|
Ye S, Liang Y, Zhang B. Bayesian Functional Mixed-effects Models with Grouped Smoothness for Analyzing Time-course Gene Expression Data. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200520082636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
As a result of the development of microarray technologies, gene expression
levels of thousands of genes involved in a given biological process can be measured
simultaneously, and it is important to study their temporal behavior to understand their
mechanisms. Since the dependence between gene expression levels over time for a given gene is
often too complicated to model parametrically, sparse functional data analysis has received an
increasing amount of attention for analyzing such data.
Methods:
We propose a new functional mixed-effects model for analyzing time-course gene
expression data. Specifically, the model groups individual functions with heterogeneous
smoothness. The proposed method utilizes the mixed-effects model representation of penalized
splines for both the mean function and the individual functions. Given noninformative or weakly
informative priors, Bayesian inference on the proposed models was developed, and Bayesian
computation was implemented by using Markov chain Monte Carlo methods.
Results:
The performance of our new model was studied by two simulation studies and illustrated
using a yeast cell cycle gene expression dataset. Simulation results suggest that our proposed
methods can outperform the previously used methods in terms of the mean integrated squared
error. The yeast gene expression data application suggests that the proposed model with two latent
groups should be used on this dataset.
Conclusion:
The new Bayesian functional mixed-effects model that assumes multiple groups of
functions with different smoothing parameters provides an enhanced approach to analyzing timecourse
gene expression data.
Collapse
Affiliation(s)
- Shangyuan Ye
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215,United States
| | - Ye Liang
- 2Department of Statistics, Oklahoma State University, Stillwater, OK 74078,United States
| | - Bo Zhang
- Department of Neurology and Biostatistics and Research Design Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115,United States
| |
Collapse
|
7
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
8
|
Kim SM, Tripathi VP, Shen KF, Forsburg SL. Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3 (BETHESDA, MD.) 2020; 10:255-266. [PMID: 31719112 PMCID: PMC6945033 DOI: 10.1534/g3.119.400726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
From yeast to humans, the cell cycle is tightly controlled by regulatory networks that regulate cell proliferation and can be monitored by dynamic visual markers in living cells. We have observed S phase progression by monitoring nuclear accumulation of the FHA-containing DNA binding protein Tos4, which is expressed in the G1/S phase transition. We use Tos4 localization to distinguish three classes of DNA replication mutants: those that arrest with an apparent 1C DNA content and accumulate Tos4 at the restrictive temperature; those that arrest with an apparent 2C DNA content, that do not accumulate Tos4; and those that proceed into mitosis despite a 1C DNA content, again without Tos4 accumulation. Our data indicate that Tos4 localization in these conditions is responsive to checkpoint kinases, with activation of the Cds1 checkpoint kinase promoting Tos4 retention in the nucleus, and activation of the Chk1 damage checkpoint promoting its turnover. Tos4 localization therefore allows us to monitor checkpoint-dependent activation that responds to replication failure in early vs. late S phase.
Collapse
Affiliation(s)
- Seong M Kim
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Vishnu P Tripathi
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| |
Collapse
|
9
|
Kocak M, Mozhui K. An Application of the Bayesian Periodicity Test to Identify Diurnal Rhythm Genes in the Brain. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:47-55. [PMID: 30047896 DOI: 10.1109/tcbb.2018.2859971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological systems are extremely dynamic and many aspects of cellular processes show rhythmic circadian patterns. Extracting such information from large expression data is challenging. In this work, we present a modified application of the Empirical Bayes periodicity test to identify genes with diurnal rhythmic behavior in two brain regions. The hypothalamus and amygdala gene expression data were generated from 100 BXD recombinant inbred mice during the day hours. Brain samples were collected over the course of two days. We first filtered the transcripts based on rank correlation at matched time points between day-1 and day-2. We then applied the proposed test of periodicity to identify diurnal rhythm genes in the full cohort and gender-specific sub-cohorts. In hypothalamus, at a Benjamini-Hochberg false discovery rate (BH-FDR) of 0.01, we identified 15 transcripts with cyclic behavior in the full cohort, none, and 53 transcripts in the female and male cohort, respectively. Similarly, in amygdala, we identified 58 diurnal rhythm genes in the full cohort, and 1 and 28 in the female and male cohorts, respectively. In conclusion, we present a modified version of the empirical Bayes periodicity test to detect periodic expression patterns. Our results demonstrate that this approach can capture cyclic patterns from relatively noisy expression data sets.
Collapse
|
10
|
González-Medina A, Hidalgo E, Ayté J. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Res 2019; 47:8439-8451. [PMID: 31260531 PMCID: PMC6895280 DOI: 10.1093/nar/gkz561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.
Collapse
Affiliation(s)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
11
|
Nakazawa N, Arakawa O, Yanagida M. Condensin locates at transcriptional termination sites in mitosis, possibly releasing mitotic transcripts. Open Biol 2019; 9:190125. [PMID: 31615333 PMCID: PMC6833218 DOI: 10.1098/rsob.190125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Condensin is an essential component of chromosome dynamics, including mitotic chromosome condensation and segregation, DNA repair, and development. Genome-wide localization of condensin is known to correlate with transcriptional activity. The functional relationship between condensin accumulation and transcription sites remains unclear, however. By constructing the auxin-inducible degron strain of condensin, herein we demonstrate that condensin does not affect transcription itself. Instead, RNA processing at transcriptional termination appears to define condensin accumulation sites during mitosis, in the fission yeast Schizosaccharomyces pombe. Combining the auxin-degron strain with the nda3 β-tubulin cold-sensitive (cs) mutant enabled us to inactivate condensin in mitotically arrested cells, without releasing the cells into anaphase. Transcriptional activation and termination were not affected by condensin's degron-mediated depletion, at heat-shock inducible genes or mitotically activated genes. On the other hand, condensin accumulation sites shifted approximately 500 bp downstream in the auxin-degron of 5′-3′ exoribonuclease Dhp1, in which transcripts became aberrantly elongated, suggesting that condensin accumulates at transcriptionally terminated DNA regions. Growth defects in mutant strains of 3′-processing ribonuclease and polyA cleavage factors were additive in condensin temperature-sensitive (ts) mutants. Considering condensin's in vitro activity to form double-stranded DNAs from unwound, single-stranded DNAs or DNA-RNA hybrids, condensin-mediated processing of mitotic transcripts at the 3′-end may be a prerequisite for faithful chromosome segregation.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, G0 Cell Unit, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Chemical screening identifies an extract from marine Pseudomonas sp.-PTR-08 as an anti-aging agent that promotes fission yeast longevity by modulating the Pap1-ctt1 + pathway and the cell cycle. Mol Biol Rep 2019; 47:33-43. [PMID: 31612412 DOI: 10.1007/s11033-019-05102-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Aging is a degenerative process characterized by progressive deterioration of cellular components, ultimately resulting in mortality, in which massive accumulation of reactive oxygen species (ROS) and advanced glycation end products (AGEs) are implicated as crucial factors. At the same time, natural products are rich sources from which to isolate and characterize potential anti-aging compounds. The current study was designed to extract compounds from the marine bacterium Pseudomonas sp. and investigate their in vitro antioxidant and anti-glycation activities, as well as their in vivo effects on aging in the model organism Schizosaccharomyces pombe. In vitro assays showed that a Pseudomonas sp. PTR-08 extract exhibited the best antioxidant and anti-glycation activities. Further, direct administration of the extract significantly increased yeast longevity, accompanied by induction of the yeast oxidative stress response. Molecular analyses indicated that selected extract dramatically up-regulated the expression of pap1+, which encodes the transcriptional factor Pap1 and ctt1+, which encodes catalase, following H2O2 treatment. In line with these results, catalase activity significantly increased, leading to a decrease in intracellular ROS. In addition, this extract may delay the G1 phase of the yeast cell cycle, leading to an extended lifespan. Moreover, our findings indicated that the extract contains pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-, which substantially promotes anti-aging activity in yeast. However, further research must be conducted to better understand the role of this compound in our system.
Collapse
|
13
|
Saint M, Bertaux F, Tang W, Sun XM, Game L, Köferle A, Bähler J, Shahrezaei V, Marguerat S. Single-cell imaging and RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nat Microbiol 2019; 4:480-491. [PMID: 30718845 DOI: 10.1038/s41564-018-0330-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery. We identify sets of highly variable genes during rapid proliferation in constant culture conditions. By integrating single-cell RNA sequencing and cell-size data, we provide insights into genes that are regulated during cell growth and division, including genes whose expression does not scale with cell size. We further analyse the heterogeneity of gene expression during adaptive and acute responses to changing environments. Entry into the stationary phase is preceded by a gradual, synchronized adaptation in gene regulation that is followed by highly variable gene expression when growth decreases. Conversely, sudden and acute heat shock leads to a stronger, coordinated response and adaptation across cells. This analysis reveals that the magnitude of global gene expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote.
Collapse
Affiliation(s)
- Malika Saint
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
- Institut Pasteur, Paris, France
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Xi-Ming Sun
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna Köferle
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
- Munich Center for Neurosciences, Ludwig-Maximilian-Universität, Planegg, Germany
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK.
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
14
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
15
|
Larriba Y, Rueda C, Fernández MA, Peddada SD. Microarray Data Normalization and Robust Detection of Rhythmic Features. Methods Mol Biol 2019; 1986:207-225. [PMID: 31115890 DOI: 10.1007/978-1-4939-9442-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Data derived from microarray technologies are generally subject to various sources of noise and accordingly the raw data are pre-processed before formally analysed. Data normalization is a key pre-processing step when dealing with microarray experiments, such as circadian gene-expressions, since it removes systematic variations across arrays. A wide variety of normalization methods are available in the literature. However, from our experience in the study of rhythmic expression patterns in oscillatory systems (e.g. cell-cycle, circadian clock), the choice of the normalization method may substantially impair the identification of rhythmic genes. Hence, the identification of a gene as rhythmic could be just as an artefact of how the data were normalized. Yet, gene rhythmicity detection is crucial in modern toxicological and pharmacological studies, thus a procedure to truly identify rhythmic genes that are robust to the choice of a normalization method is required.To perform the task of detecting rhythmic features, we propose a rhythmicity measure based on bootstrap methodology to robustly identify rhythmic genes in oscillatory systems. Although our methodology can be extended to any high-throughput experiment, in this chapter, we illustrate how to apply it to a publicly available circadian clock microarray gene-expression data and give full details (both statistical and computational) so that the methodology can be used in an easy way. We will show that the choice of normalization method has very little effect on the proposed methodology since the results derived from the bootstrap-based rhythmicity measure are highly rank correlated for any pair of normalization methods considered. This suggests, on the one hand, that the rhythmicity measure proposed is robust to the choice of the normalization method, and on the other hand, that gene rhythmicity detected using this measure is potentially not a mere artefact of the normalization method used. In this way the researcher using this methodology will be protected against the possible effect of different normalizations, as the conclusions obtained will not depend so strongly on them. Additionally, the described bootstrap methodology can also be employed as a tool to simulate gene-expression participating in an oscillatory system from a reference data set.
Collapse
Affiliation(s)
- Yolanda Larriba
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain.
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Shyamal D Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
17
|
Schiklenk C, Petrova B, Kschonsak M, Hassler M, Klein C, Gibson TJ, Haering CH. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1. J Cell Biol 2018; 217:2383-2401. [PMID: 29735745 PMCID: PMC6028546 DOI: 10.1083/jcb.201711097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
How chromosomes compact into rod-shaped structures is a longstanding unresolved question of cell biology. Schiklenk et al. identify the transcription factor Zas1 as a central regulator of mitotic chromosome condensation in fission yeast and show that it uses a conserved transactivation domain–based mechanism to control gene expression. Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C2H2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe. By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation.
Collapse
Affiliation(s)
- Christoph Schiklenk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Klein
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
18
|
Larriba Y, Rueda C, Fernández MA, Peddada SD. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data. Front Genet 2018; 9:24. [PMID: 29456555 PMCID: PMC5801422 DOI: 10.3389/fgene.2018.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023] Open
Abstract
Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html
Collapse
Affiliation(s)
- Yolanda Larriba
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Barragan S, Rueda C, Fernandez M. Circular Order Aggregation and its Application to Cell-cycle Genes Expressions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:819-829. [PMID: 27305684 DOI: 10.1109/tcbb.2016.2565469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of circular order aggregation is to find a circular order on a set of n items using angular values from p heterogeneous data sets. This problem is new in the literature and has been motivated by the biological question of finding the order among the peak expression of a group of cell cycle genes. In this paper, two very different approaches to solve the problem that use pairwise and triplewise information are proposed. Both approaches are analyzed and compared using theoretical developments and numerical studies, and applied to the cell cycle data that motivated the problem.
Collapse
|
20
|
Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe. Antonie van Leeuwenhoek 2017. [PMID: 28639147 DOI: 10.1007/s10482-017-0902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.
Collapse
|
21
|
Kelliher CM, Haase SB. Connecting virulence pathways to cell-cycle progression in the fungal pathogen Cryptococcus neoformans. Curr Genet 2017; 63:803-811. [PMID: 28265742 PMCID: PMC5605583 DOI: 10.1007/s00294-017-0688-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/01/2022]
Abstract
Proliferation and host evasion are critical processes to understand at a basic biological level for improving infectious disease treatment options. The human fungal pathogen Cryptococcus neoformans causes fungal meningitis in immunocompromised individuals by proliferating in cerebrospinal fluid. Current antifungal drugs target "virulence factors" for disease, such as components of the cell wall and polysaccharide capsule in C. neoformans. However, mechanistic links between virulence pathways and the cell cycle are not as well studied. Recently, cell-cycle synchronized C. neoformans cells were profiled over time to identify gene expression dynamics (Kelliher et al., PLoS Genet 12(12):e1006453, 2016). Almost 20% of all genes in the C. neoformans genome were periodically activated during the cell cycle in rich media, including 40 genes that have previously been implicated in virulence pathways. Here, we review important findings about cell-cycle-regulated genes in C. neoformans and provide two examples of virulence pathways-chitin synthesis and G-protein coupled receptor signaling-with their putative connections to cell division. We propose that a "comparative functional genomics" approach, leveraging gene expression timing during the cell cycle, orthology to genes in other fungal species, and previous experimental findings, can lead to mechanistic hypotheses connecting the cell cycle to fungal virulence.
Collapse
Affiliation(s)
- Christina M Kelliher
- Department of Biology, Duke University, Box 90338, 130 Science Drive, Durham, NC, 27708-0338, USA
| | - Steven B Haase
- Department of Biology, Duke University, Box 90338, 130 Science Drive, Durham, NC, 27708-0338, USA.
| |
Collapse
|
22
|
Giotti B, Joshi A, Freeman TC. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types. BMC Genomics 2017; 18:30. [PMID: 28056781 PMCID: PMC5217208 DOI: 10.1186/s12864-016-3435-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. RESULTS Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. CONCLUSIONS Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G1/S-S and G2-M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.
Collapse
Affiliation(s)
- Bruno Giotti
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK.
| | - Anagha Joshi
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| | - Tom C Freeman
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
23
|
Larriba Y, Rueda C, Fernández MA, Peddada SD. Order restricted inference for oscillatory systems for detecting rhythmic signals. Nucleic Acids Res 2016; 44:e163. [PMID: 27596593 PMCID: PMC5159537 DOI: 10.1093/nar/gkw771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. AVAILABILITY AND IMPLEMENTATION A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm CONTACT: peddada@niehs.nih.gov.
Collapse
Affiliation(s)
- Yolanda Larriba
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Alexander Dr., RTP, NC 27709, USA
| |
Collapse
|
24
|
Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans. PLoS Genet 2016; 12:e1006453. [PMID: 27918582 PMCID: PMC5137879 DOI: 10.1371/journal.pgen.1006453] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 12/24/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation.
Collapse
|
25
|
Převorovský M, Oravcová M, Zach R, Jordáková A, Bähler J, Půta F, Folk P. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast. Cell Cycle 2016; 15:3082-3093. [PMID: 27687771 DOI: 10.1080/15384101.2016.1235100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.
Collapse
Affiliation(s)
- Martin Převorovský
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| | - Martina Oravcová
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| | - Róbert Zach
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| | - Anna Jordáková
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| | - Jürg Bähler
- b Research Department of Genetics , Evolution & Environment and UCL Cancer Institute, University College London , Gower Street, London , UK
| | - František Půta
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| | - Petr Folk
- a Department of Cell Biology , Faculty of Science, Charles University in Prague , Prague , Czech Republic
| |
Collapse
|
26
|
Banyai G, Baïdi F, Coudreuse D, Szilagyi Z. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription. Nat Commun 2016; 7:11161. [PMID: 27045731 PMCID: PMC4822045 DOI: 10.1038/ncomms11161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/26/2016] [Indexed: 01/15/2023] Open
Abstract
Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and relies on periodic gene cluster expression according to cell cycle phases. Here the authors use a synthetic regulatable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity.
Collapse
Affiliation(s)
- Gabor Banyai
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A, PO Box 440, 41390 Gothenburg, Sweden
| | - Feriel Baïdi
- SyntheCell team, Institute of Genetics and Development of Rennes, CNRS UMR 6290, 2 Avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Damien Coudreuse
- SyntheCell team, Institute of Genetics and Development of Rennes, CNRS UMR 6290, 2 Avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A, PO Box 440, 41390 Gothenburg, Sweden
| |
Collapse
|
27
|
Chávez S, García-Martínez J, Delgado-Ramos L, Pérez-Ortín JE. The importance of controlling mRNA turnover during cell proliferation. Curr Genet 2016; 62:701-710. [PMID: 27007479 DOI: 10.1007/s00294-016-0594-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Microbial gene expression depends not only on specific regulatory mechanisms, but also on cellular growth because important global parameters, such as abundance of mRNAs and ribosomes, could be growth rate dependent. Understanding these global effects is necessary to quantitatively judge gene regulation. In the last few years, transcriptomic works in budding yeast have shown that a large fraction of its genes is coordinately regulated with growth rate. As mRNA levels depend simultaneously on synthesis and degradation rates, those studies were unable to discriminate the respective roles of both arms of the equilibrium process. We recently analyzed 80 different genomic experiments and found a positive and parallel correlation between both RNA polymerase II transcription and mRNA degradation with growth rates. Thus, the total mRNA concentration remains roughly constant. Some gene groups, however, regulate their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulate their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lower mRNA levels by reducing mRNA stability or the transcription rate, respectively. We critically review here these results and analyze them in relation to their possible extrapolation to other organisms and in relation to the new questions they open.
Collapse
Affiliation(s)
- Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Burjassot, Spain.,ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Lidia Delgado-Ramos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain. .,ERI Biotecmed, Universitat de València, Burjassot, Spain.
| |
Collapse
|
28
|
Gaspa L, González-Medina A, Hidalgo E, Ayté J. A functional genome-wide genetic screening identifies new pathways controlling the G1/S transcriptional wave. Cell Cycle 2016; 15:720-9. [PMID: 26890608 DOI: 10.1080/15384101.2016.1148839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The Schizosaccharomyces pombe MBF complex activates the transcription of genes required for DNA synthesis and S phase. The MBF complex contains several proteins, including the core components Cdc10, Res1 and Res2, the co-repressor proteins Yox1 and Nrm1 and the co-activator Rep2. It has recently been shown how MBF is regulated when either the DNA damage or the DNA synthesis checkpoints are activated. However, how MBF is regulated in a normal unperturbed cell cycle is still not well understood. We have set up a genome-wide genomic screen searching for global regulators of MBF. We have crossed our knock-out collection library with a reporter strain that allows the measurement of MBF activity in live cells by flow cytometry. We confirm previously known regulators of MBF and show that COP9/signalosome and tRNA methyltransferases also regulate MBF activity.
Collapse
Affiliation(s)
- Laura Gaspa
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| | | | - Elena Hidalgo
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| | - José Ayté
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
29
|
Bandyopadhyay S, Sundaram G. Genome wide transcription profiling reveals a major role for the transcription factor Atf1 in regulation of cell division in Schizosaccharomyces pombe. GENOMICS DATA 2015; 6:184-7. [PMID: 26697368 PMCID: PMC4664745 DOI: 10.1016/j.gdata.2015.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
The mechanism underlying stringently controlled sequence of events in the eukaryotic cell cycle involves periodic transcription of a number of genes encoding important regulators of cell cycle, growth, proliferation and apoptosis. Deregulated activities of transcription factors that contribute to this programmed gene expression, are associated with many diseases including cancer. A detailed mechanistic understanding of the transcriptional control associated with cell division is, therefore, important. We have reported earlier that the transcription factor Atf1 in Schizosaccharomyces pombe can regulate G2–M transition by directly controlling the expression of the mitotic cyclin Cdc13 (1).To gain a better understanding of the role of Atf1 in cell cycle, we performed a microarray based identification of cell cycle related targets of Atf1. The microarray data are available at NCBI's Gene Expression Omnibus (GEO) Series (accession number GSE71820). Here we report the annotation of the genes whose expression get altered by Atf1 overexpression and also provide details related to sample processing and statistical analysis of our microarray data.
Collapse
Affiliation(s)
- Sushobhana Bandyopadhyay
- Department of Biochemistry and Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, 35, Ballygunje Circular Road, Kolkata 700019, WB, India
| | - Geetanjali Sundaram
- Department of Biochemistry and Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, 35, Ballygunje Circular Road, Kolkata 700019, WB, India
| |
Collapse
|
30
|
Převorovský M, Oravcová M, Tvarůžková J, Zach R, Folk P, Půta F, Bähler J. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles. PLoS One 2015; 10:e0137820. [PMID: 26366556 PMCID: PMC4569565 DOI: 10.1371/journal.pone.0137820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. METHODOLOGY/PRINCIPAL FINDINGS Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. CONCLUSIONS/SIGNIFICANCE Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast.
Collapse
Affiliation(s)
- Martin Převorovský
- Research Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martina Oravcová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jarmila Tvarůžková
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Róbert Zach
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jürg Bähler
- Research Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
31
|
Suárez MB, Alonso-Nuñez ML, del Rey F, McInerny CJ, Vázquez de Aldana CR. Regulation of Ace2-dependent genes requires components of the PBF complex in Schizosaccharomyces pombe. Cell Cycle 2015; 14:3124-37. [PMID: 26237280 DOI: 10.1080/15384101.2015.1078035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The division cycle of unicellular yeasts is completed with the activation of a cell separation program that results in the dissolution of the septum assembled during cytokinesis between the 2 daughter cells, allowing them to become independent entities. Expression of the eng1(+) and agn1(+) genes, encoding the hydrolytic enzymes responsible for septum degradation, is activated at the end of each cell cycle by the transcription factor Ace2. Periodic ace2(+) expression is regulated by the transcriptional complex PBF (PCB Binding Factor), composed of the forkhead-like proteins Sep1 and Fkh2 and the MADS box-like protein Mbx1. In this report, we show that Ace2-dependent genes contain several combinations of motifs for Ace2 and PBF binding in their promoters. Thus, Ace2, Fkh2 and Sep1 were found to bind in vivo to the eng1(+) promoter. Ace2 binding was coincident with maximum level of eng1(+) expression, whereas Fkh2 binding was maximal when mRNA levels were low, supporting the notion that they play opposing roles. In addition, we found that the expression of eng1(+) and agn1(+) was differentially affected by mutations in PBF components. Interestingly, agn1(+) was a major target of Mbx1, since its ectopic expression resulted in the suppression of Mbx1 deletion phenotypes. Our results reveal a complex regulation system through which the transcription factors Ace2, Fkh2, Sep1 and Mbx1 in combination control the expression of the genes involved in separation at the end of the cell division cycle.
Collapse
Affiliation(s)
- M Belén Suárez
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | - Francisco del Rey
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | | |
Collapse
|
32
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
33
|
Determination of Temporal Order among the Components of an Oscillatory System. PLoS One 2015; 10:e0124842. [PMID: 26151635 PMCID: PMC4495067 DOI: 10.1371/journal.pone.0124842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
Oscillatory systems in biology are tightly regulated process where the individual components (e.g. genes) express in an orderly manner by virtue of their functions. The temporal order among the components of an oscillatory system may potentially be disrupted for various reasons (e.g. environmental factors). As a result some components of the system may go out of order or even cease to participate in the oscillatory process. In this article, we develop a novel framework to evaluate whether the temporal order is unchanged in different populations (or experimental conditions). We also develop methodology to estimate the order among the components with a suitable notion of “confidence.” Using publicly available data on S. pombe, S. cerevisiae and Homo sapiens we discover that the temporal order among the genes cdc18; mik1; hhf1; hta2; fkh2 and klp5 is evolutionarily conserved from yeast to humans.
Collapse
|
34
|
Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res 2015; 43:6874-88. [PMID: 25908789 PMCID: PMC4538799 DOI: 10.1093/nar/gkv274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms.
Collapse
Affiliation(s)
- Angad Garg
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Futcher
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Janet Leatherwood
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
35
|
Gu Y, Yam C, Oliferenko S. Rewiring of cellular division site selection in evolution of fission yeasts. Curr Biol 2015; 25:1187-94. [PMID: 25866389 PMCID: PMC4425460 DOI: 10.1016/j.cub.2015.02.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Strategies to position the division apparatus exhibit a bewildering diversity [1], but how these mechanisms evolve remains virtually unknown. Here, we explore the plasticity of division site positioning in fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We demonstrate that, whereas both species divide in the middle, only S. pombe uses the anillin Mid1 as a primary nucleus-derived cue to assemble the actomyosin ring at the equatorial cortex. We trace this variance to the divergence in subcellular targeting of Mid1 and show that duplication of an ancestral anillin early in the Schizosaccharomyces lineage may have led to subfunctionalization of the Mid1 orthologs. In contrast to S. pombe, medial assembly of the actomyosin ring in mitotic S. japonicus relies on the cortical anchor protein Cdc15 regulated by the tip-localized kinase Pom1. Our data suggest that division site placement is determined by cortical positioning of the actomyosin-plasma membrane linkers and that both identity of the linker and control of its subcellular targeting are highly modular.
Collapse
Affiliation(s)
- Ying Gu
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Candice Yam
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Snezhana Oliferenko
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
36
|
Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 2015; 30:53-67. [PMID: 25881042 DOI: 10.1016/j.dnarep.2015.03.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 01/10/2023]
Abstract
Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: www.dnarepairgenes.com. Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.
Collapse
|
37
|
Han S, Wong RKW, Lee TCM, Shen L, Li SYR, Fan X. A full bayesian approach for boolean genetic network inference. PLoS One 2014; 9:e115806. [PMID: 25551820 PMCID: PMC4281059 DOI: 10.1371/journal.pone.0115806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 11/29/2014] [Indexed: 02/03/2023] Open
Abstract
Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.
Collapse
Affiliation(s)
- Shengtong Han
- Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Raymond K. W. Wong
- Department of Statistics, Iowa State University, Ames, IA, United States of America
| | - Thomas C. M. Lee
- Department of Statistics, University of California Davis, Davis, CA, United States of America
| | - Linghao Shen
- Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Shuo-Yen R. Li
- Department of Information Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- * E-mail:
| |
Collapse
|
38
|
Transcriptional profiling analysis of individual kinase-deletion strains of fission yeast in response to nitrogen starvation. Mol Genet Genomics 2014; 290:1067-83. [PMID: 25528445 DOI: 10.1007/s00438-014-0966-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023]
Abstract
Nitrogen starvation (NS) induces sexual development when mating partners are available or enter into quiescent state (G0) in heterothallic background in fission yeast. However, little is known whether the two processes share common signaling molecules or cells defective in the two processes share common transcriptional signatures. To address these questions, we first assessed 77 kinase-deletion strains for NS-induced G0-arrest phenotypes. Our result indicated that 10 out of 77 kinase-deletion strains exhibited defect in G0-arrest, only 3 of which were defective in sexual development based on a previous study, suggesting that the two processes hardly share common signaling components. We subsequently performed transcriptional profiling analysis. Our result indicated that NS-induced transcriptional change was so robust that it prevailed the alteration by individual kinase-deletion alleles. Based on comparison between kinase-deletion strains proficient and deficient in sexual development or G0-arrest, we identified subsets of genes that were associated with sexual development-deficient or G0-arrest-deficient kinase-deletion strains. Multiple pairing analyses allowed grouping of functional related kinases. Furthermore, we showed that Pka1-mediated pathways were required for upregulation of NS-induced genes upon NS and downregulation of the same set of genes under the N-replete conditions. Taken together, our analyses indicate that sexual development and NS-induced G0-arrest are unrelated; and sexual development-deficient and G0-arrest-deficient kinase-deletion strains possess distinct transcriptional signatures. We propose that Pka1 is a key regulator of nitrogen metabolic pathways and Pka1-mediated signaling pathways play roles in regulation of NS-induced genes under both N-depleted and N-replete conditions.
Collapse
|
39
|
Kocak M. Meta-analysis of bivariate P values. World J Meta-Anal 2014; 2:179-185. [DOI: 10.13105/wjma.v2.i4.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/08/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To propose a new meta-analysis method for bivariate P value which account for the paired structure.
METHODS: Studies that look to test two different features from the same sample gives rise to bivariate P value. A relevant example of this is testing for periodicity as well expression from time-course gene expression studies. Kocak et al (2010) uses George and Mudholkar’ (1983) “Difference of Two Logit-Sums” method to pool bivariate P value across independent experiments, assuming independence within a pair. As bivariate P value need not to be independent within a given study, we propose a new meta-analysis approach for pooling bivariate P value across independent experiments, which accounts for potential correlation between paired P-values. We compare the “Difference of Two Logit Sums”method with our novel approach in terms of their sensitivity and specificity through extensive simulations by generating P value samples from most commonly used tests namely, Z test, t test, chi-square test, and F test, with varying sample sizes and correlation structure.
RESULTS: The simulations results showed that our new meta-analysis approach for correlated and uncorrelated bivariate P value has much more desirable sensitivity and specificity features compared to the existing method, which treats each member of the paired P value as independent. We also compare these meta-analysis approaches on bivariate P value from periodicity and expression tests of 4936 S.Pombe genes from 10 independent time-course experiments and we showed that our new approach ranks the periodic, conserved, and cycling genes significantly higher, and detects many more periodic, “conserved” and “cycling” genes among the top 100 genes, compared to the ‘Difference of Two Logit-Sums’ method. Finally, we used our meta-analytic approach to compare the relative evidence in the association of pre-term birth with preschool wheezing versus pre-school asthma.
CONCLUSION: The new meta-analysis method has much better sensitivity and specific characteristics compared to the “Difference of Two-Logit Sums” method and it is not computationally more expensive.
Collapse
|
40
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
41
|
Mediator can regulate mitotic entry and direct periodic transcription in fission yeast. Mol Cell Biol 2014; 34:4008-18. [PMID: 25154415 DOI: 10.1128/mcb.00819-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events.
Collapse
|
42
|
Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B. Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (Fission Yeast). Mol Cell Proteomics 2014; 13:1925-36. [PMID: 24763107 PMCID: PMC4125727 DOI: 10.1074/mcp.m113.035824] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/18/2014] [Indexed: 12/27/2022] Open
Abstract
To quantify cell cycle-dependent fluctuations on a proteome-wide scale, we performed integrative analysis of the proteome and phosphoproteome during the four major phases of the cell cycle in Schizosaccharomyces pombe. In highly synchronized cells, we identified 3753 proteins and 3682 phosphorylation events and relatively quantified 65% of the data across all phases. Quantitative changes during the cell cycle were infrequent and weak in the proteome but prominent in the phosphoproteome. Protein phosphorylation peaked in mitosis, where the median phosphorylation site occupancy was 44%, about 2-fold higher than in other phases. We measured copy numbers of 3178 proteins, which together with phosphorylation site stoichiometry enabled us to estimate the absolute amount of protein-bound phosphate, as well as its change across the cell cycle. Our results indicate that 23% of the average intracellular ATP is utilized by protein kinases to phosphorylate their substrates to drive regulatory processes during cell division. Accordingly, we observe that phosphate transporters and phosphate-metabolizing enzymes are phosphorylated and therefore likely to be regulated in mitosis.
Collapse
Affiliation(s)
- Alejandro Carpy
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Karsten Krug
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Sabine Graf
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - André Koch
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - Sasa Popic
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany
| | - Silke Hauf
- ¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
| | - Boris Macek
- From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany,
| |
Collapse
|
43
|
Barragán S, Fernández MA, Rueda C, Peddada SD. isocir: An R Package for Constrained Inference using Isotonic Regression for Circular Data, with an Application to Cell Biology. J Stat Softw 2014; 54. [PMID: 24976799 DOI: 10.18637/jss.v054.i04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In many applications one may be interested in drawing inferences regarding the order of a collection of points on a unit circle. Due to the underlying geometry of the circle standard constrained inference procedures developed for Euclidean space data are not applicable. Recently, statistical inference for parameters under such order constraints on a unit circle was discussed in Rueda et al. (2009); Fernández et al. (2012). In this paper we introduce an R package called isocir which provides a set of functions that can be used for analyzing angular data subject to order constraints on a unit circle. Since this work is motivated by applications in cell biology, we illustrate the proposed package using a relevant cell cycle data.
Collapse
Affiliation(s)
- Sandra Barragán
- Departamento de Estadística e Investigación Operativa Instituto de Matemáticas (IMUVA) Universidad de Valladolid Valladolid, Spain
| | - Miguel A Fernández
- Departamento de Estadística e Investigación Operativa Instituto de Matemáticas (IMUVA) Universidad de Valladolid Valladolid, Spain
| | - Cristina Rueda
- Departamento de Estadística e Investigación Operativa Instituto de Matemáticas (IMUVA) Universidad de Valladolid Valladolid, Spain
| | - Shyamal Das Peddada
- Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park NC 27709, USA
| |
Collapse
|
44
|
Abstract
The cell cycle comprises a series of temporally ordered events that occur sequentially, including DNA replication, centrosome duplication, mitosis, and cytokinesis. What are the regulatory mechanisms that ensure proper timing and coordination of events during the cell cycle? Biochemical and genetic screens have identified a number of cell-cycle regulators, and it was recognized early on that many of the genes encoding cell-cycle regulators, including cyclins, were transcribed only in distinct phases of the cell cycle. Thus, "just in time" expression is likely an important part of the mechanism that maintains the proper temporal order of cell cycle events. New high-throughput technologies for measuring transcript levels have revealed that a large percentage of the Saccharomyces cerevisiae transcriptome (~20 %) is cell cycle regulated. Similarly, a substantial fraction of the mammalian transcriptome is cell cycle-regulated. Over the past 25 years, many studies have been undertaken to determine how gene expression is regulated during the cell cycle. In this review, we discuss contemporary models for the control of cell cycle-regulated transcription, and how this transcription program is coordinated with other cell cycle events in S. cerevisiae. In addition, we address the genomic approaches and analytical methods that enabled contemporary models of cell cycle transcription. Finally, we address current and future technologies that will aid in further understanding the role of periodic transcription during cell cycle progression.
Collapse
|
45
|
Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, Kislinger T, Roguev A, Ryan CJ, Xu J, Jahari H, Hardwick KG, Greenblatt JF, Krogan NJ, Fillingham JS, Strahl BD, Bouhassira EE, Edelmann W, Keogh MC. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 2014; 6:892-905. [PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 11/26/2022] Open
Abstract
Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Scott B Rothbart
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrea C Silva
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Ernest Radovani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Colm J Ryan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; School of Medicine & Medical Science, University College, Dublin 4, Ireland
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Harlizawati Jahari
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; Malaysian Institute of Pharmaceuticals and Nutraceuticals, 11800 USM Penang, Malaysia
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Jack F Greenblatt
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey S Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | | |
Collapse
|
46
|
Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network. Biochem Soc Trans 2013; 41:1696-700. [DOI: 10.1042/bst20130224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.
Collapse
|
47
|
Heinrich S, Geissen EM, Kamenz J, Trautmann S, Widmer C, Drewe P, Knop M, Radde N, Hasenauer J, Hauf S. Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol 2013; 15:1328-39. [DOI: 10.1038/ncb2864] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/20/2013] [Indexed: 02/08/2023]
|
48
|
Vjestica A, Zhang D, Liu J, Oliferenko S. Hsp70-Hsp40 chaperone complex functions in controlling polarized growth by repressing Hsf1-driven heat stress-associated transcription. PLoS Genet 2013; 9:e1003886. [PMID: 24146635 PMCID: PMC3798271 DOI: 10.1371/journal.pgen.1003886] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. Heat stress, caused by fluctuations in ambient temperature, occurs frequently in nature. How organisms adapt and maintain regular patterns of growth over a range of environmental conditions remain poorly understood. Our work in the simple unicellular yeast Schizosaccharomyces pombe suggests that the heat stress-associated transcription must be repressed by the evolutionary conserved Hsp70-Hsp40 chaperone complex to allow cells to adapt the polarized growth machinery to elevated temperature.
Collapse
Affiliation(s)
- Aleksandar Vjestica
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Snezhana Oliferenko
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: ,
| |
Collapse
|
49
|
Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood TA, Sherlock G, Cheng C, Whitfield ML. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell 2013; 24:3634-50. [PMID: 24109597 PMCID: PMC3842991 DOI: 10.1091/mbc.e13-05-0264] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Characterization of the cell cycle–regulated transcripts in U2OS cells yielded 1871 unique genes. FOXM1 targets were identified via ChIP-seq, and novel targets in G2/M and S phases were verified using a real-time luciferase assay. ChIP-seq data were used to map cell cycle transcriptional regulators of cell cycle–regulated gene expression in U2OS cells. We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle–regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cooper S. Schizosaccharomyces pombegrows exponentially during the division cycle with no rate change points. FEMS Yeast Res 2013; 13:650-8. [DOI: 10.1111/1567-1364.12072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/22/2023] Open
|