1
|
Lan Q, Wu P, Yu Y, Zhou J, Lu H. Metabolic engineering of Kluyveromyces marxianus to produce myo-inositol from starch. BIORESOURCE TECHNOLOGY 2025; 426:132370. [PMID: 40064453 DOI: 10.1016/j.biortech.2025.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
To efficiently produce myo-inositol from glucose, the PGI1, ZWF1, ITR2, and MIOX5 genes in Kluyveromyces marxianus were knocked out to block glucose metabolism via the Embden-Meyerhof-Parnas (EMP) and pentose phosphate pathways (PPP), prevent myo-inositol oxidative degradation. The metabolically engineered KM-JC4 strain, introduced with myo-inositol synthesis genes, produced 80.7 g/L in a 5 L bioreactor using glucose and glycerol as carbon sources. Subsequently, the starch-fermenting and inositol-producing strain KM-JC5 was constructed by co-expressing BadGlA, an α-glucoamylase from Blastobotrys adeninivorans with high ability to release glucose from soluble starch, and the myo-inositol synthesis enzymes. Using 5% soluble starch and liquefied starch, the myo-inositol yields reached 32.2 g/L and 40.6 g/L, with the starch-to-myo-inositol conversion rates of 64.4% and 81.1%, respectively. This study provides an effective strategy for bioproduction by balancing glycolysis and PPP metabolism in yeast, and the metabolically engineered strain represents a promising platform for inositol production.
Collapse
Affiliation(s)
- Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| |
Collapse
|
2
|
Wang L, Li X, Shi J, Li LM. A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle. NAR Genom Bioinform 2025; 7:lqaf022. [PMID: 40109351 PMCID: PMC11920873 DOI: 10.1093/nargab/lqaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.
Collapse
Affiliation(s)
- Linting Wang
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaojie Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhui Shi
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Lei M Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
3
|
Liu Z, Shangguan L, Xu L, Zhang H, Wang W, Yang Q, Zhang X, Yao L, Yang S, Chen X, Dai J. Enhanced multistress tolerance of Saccharomyces cerevisiae with the sugar transporter-like protein Stl1 F427L mutation in the presence of glycerol. Microbiol Spectr 2025; 13:e0008924. [PMID: 39679667 PMCID: PMC11792538 DOI: 10.1128/spectrum.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/05/2024] [Indexed: 12/17/2024] Open
Abstract
During microbial industrial production, microorganisms often face diverse stressors, including organic solvents, high salinity, and high sugar levels. Enhancing microorganism tolerance to such stresses is crucial for producing high-value-added products. Previous studies on the mechanisms of 2-phenylethanol (2-PE) tolerance in Saccharomyces cerevisiae revealed a potential connection between the sugar transporter-like protein (Stl1) mutation (F427L) and increased tolerance to high sugar and salt stress, suggesting a broader role in multistress tolerance. Herein, we showed that the Stl1F427L mutant strain (STL) exhibits significantly improved multistress tolerance in the presence of glycerol. Molecular dynamics simulations indicated that Stl1F427L may enhance glycerol molecular binding, resulting in a significant increase in the intracellular glycerol content of the mutant strain STL. Additionally, under multistress conditions, pyruvate and ergosterol levels and catalase (CAT) and superoxide dismutase (SOD) activities were significantly increased in the mutant strain STL compared with the control strain 5D. This resulted in a notable increase in cell membrane toughness and a decrease in intracellular reactive oxygen species levels. These findings highlight the mechanism by which Stl1F427L enhances S. cerevisiae tolerance to multistress. Importantly, they provide novel insights into and methodologies for improving the resilience of industrial microorganisms. IMPORTANCE Stl1F427L exhibits improved strain tolerance to multistress when adding glycerol, may enhance glycerol molecular binding, and can make a significant increase in intracellular glycerol content. It can reduce reactive oxygen species levels and increase ergosterol content. This paper provides novel insights and methods to get robust industrial microorganisms.
Collapse
Affiliation(s)
- Zixiong Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Lingling Shangguan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Linglong Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Huiyan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenxin Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wess J, Hu Y, Periyannan S, Jones A, Rathjen JP. Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici. Fungal Genet Biol 2025; 176:103956. [PMID: 39828139 DOI: 10.1016/j.fgb.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat. The major control methods which include the deployment of resistant wheat cultivars and application of chemical fungicides are losing efficiency as the fungus evolves. Natural antagonists of Pst may be an avenue for alternative and environmentally sustainable control of the disease in the field. Here we describe a novel fungus found growing on Pst pustules. We identified the fungus as a novel isolate of the plant endophyte Penicillium coffeae. We present a high-quality reference genome and a comparative transcriptomic analysis used to investigate how the fungus deploys its genes during growth amongst Pst spores. The gene content of the P. coffeae ANU01 genome is suggestive of a generalist that makes use of diverse substrates. An abundance of genes related to lipid, amino acid and carbohydrate metabolism indicate that P. coffeae ANU01 has evolved the ability to exploit nutrient stores in Pst urediniospores. P. coffeae ANU01 deploys a number of biosynthetic gene clusters during growth on Pst spores, potentially to inhibit urediniospores germination and halt defence responses. A number of genes encoding carbohydrate active enzymes are also highly upregulated, suggesting targeting and degradation of Pst urediniospores structures. Alongside carbohydrates, P. coffeae ANU01 appears to target spore lipids as a nutrient source, secreting several highly upregulated lipases. Our findings broaden the understanding of growth associated with rust spores as an evolutionary strategy and provide insight into the genes potentially required for this process.
Collapse
Affiliation(s)
- Jack Wess
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia.
| | - Yiheng Hu
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia.
| | - Sambasivam Periyannan
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia.
| | - Ashley Jones
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia.
| | - John P Rathjen
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Perpelea A, Bahia FM, Xiberras J, Devanthi PVP, Branduardi P, Klein M, Nevoigt E. The physiology of an engineered Saccharomyces cerevisiae strain that carries both an improved glycerol-3-phosphate and the synthetic dihydroxyacetone pathway for glycerol utilization. FEMS Yeast Res 2025; 25:foaf015. [PMID: 40158198 PMCID: PMC11974383 DOI: 10.1093/femsyr/foaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/04/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025] Open
Abstract
Our laboratory previously established variants of the Saccharomyces cerevisiae strain CEN.PK113-1A able to grow in synthetic glycerol medium. One approach focused on improving the endogenous l-glycerol-3-phosphate (G3P) pathway, while a second approach aimed to replace the endogenous pathway with the dihydroxyacetone (DHA) pathway. The latter approach led to a significantly higher maximum specific growth rate (µmax) of 0.26 h-1 compared to 0.14 h-1. The current study focused on combining all genetic modifications in one strain. Apart from the so-called "TWO pathway strain" (CEN TWOPW), two isogenic control strains, CEN G3PPW and CEN DHAPW, were constructed. The µmax of CEN TWOPW (∼0.24 h-1) was virtually identical to that of CEN DHAPW. Remarkable characteristics of the strain CEN TWOPW compared to CEN DHAPW include a higher specific glycerol consumption rate, the capacity to deplete glycerol completely, and a much higher ethanol and lower biomass formation during oxygen-limited shake flask cultivations. The results obtained with different alleles of the GUT1 gene, encoding for glycerol kinase, suggest that the phenotype of the strain CEN TWOPW is at least partly attributed to the particular point mutation in the GUT1 allele used from the strain JL1, which was previously generated through adaptive laboratory evolution.
Collapse
Affiliation(s)
- Andreea Perpelea
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Frederico Mendonça Bahia
- School of Science, Constructor University, 28759 Bremen, Germany
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Joeline Xiberras
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Putu Virgina Partha Devanthi
- School of Science, Constructor University, 28759 Bremen, Germany
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, 13210 Jakarta, Indonesia
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Mathias Klein
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Elke Nevoigt
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
6
|
Yin J, Zhao J, Wang Z, Fang Z, Guo H, Cheng H, Li J, Shen J, Yin M, Su X, Yan S. Preparation of Multifunctional Nano-Protectants for High-Efficiency Green Control of Anthracnose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410585. [PMID: 39556712 DOI: 10.1002/advs.202410585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Nanomaterials cannot only act as active ingredients (AIs), but also adjuvants to encapsulate or attach AIs to improve their fungicidal activity. Herein, a hydrophilic and lipophilic diblock polymer (HLDP) is designed and synthesized to prepare a series of HLDP nano-protectants to explore the best HLDP nano-protectant for anthracnose management. These results demonstrate that the HLDP-CS nano-protectant displays the best control effects on mango anthracnose via the direct pathogen inhibition and amplified plant immune responses. The HLDP can be spontaneously conjugated with CS into nanoscale spherical particles through hydrophobic interaction. The complexation of CS with HLDP remarkably improves the deposition and adhesion of CS droplets on mango leaves. The HLDP can interact with mycelium via electrostatic interaction to damage the cell wall/membrane, which can act as an AI to directly suppress the spore germination and mycelial growth. Meanwhile, HLDP can be applied as an adjuvant for CS to amplify the plant immune responses via accelerating the biosynthesis of secondary metabolites and plant hormones. This work reports the multiple missions for nanomaterials in pathogen control, which proposes a novel strategy for designing nano-protectant with dual-synergistic mechanism.
Collapse
Affiliation(s)
- Jiaming Yin
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jiajia Zhao
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Fang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Huiming Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Hongmei Cheng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaofeng Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
7
|
Jenkins Sánchez LR, Sips LM, Van Bogaert INA. Just passing through: Deploying aquaporins in microbial cell factories. Biotechnol Prog 2024; 40:e3497. [PMID: 39051848 DOI: 10.1002/btpr.3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.
Collapse
Affiliation(s)
- Liam Richard Jenkins Sánchez
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| | - Lobke Maria Sips
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| | - Inge Noëlle Adriënne Van Bogaert
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
10
|
Donzella L, Sousa MJ, Morrissey JP. Evolution and functional diversification of yeast sugar transporters. Essays Biochem 2023; 67:811-827. [PMID: 36928992 PMCID: PMC10500205 DOI: 10.1042/ebc20220233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
While simple sugars such as monosaccharides and disaccharide are the typical carbon source for most yeasts, whether a species can grow on a particular sugar is generally a consequence of presence or absence of a suitable transporter to enable its uptake. The most common transporters that mediate sugar import in yeasts belong to the major facilitator superfamily (MFS). Some of these, for example the Saccharomyces cerevisiae Hxt proteins have been extensively studied, but detailed information on many others is sparce. In part, this is because there are many lineages of MFS transporters that are either absent from, or poorly represented in, the model S. cerevisiae, which actually has quite a restricted substrate range. It is important to address this knowledge gap to gain better understanding of the evolution of yeasts and to take advantage of sugar transporters to exploit or engineer yeasts for biotechnological applications. This article examines the full repertoire of MFS proteins in representative budding yeasts (Saccharomycotina). A comprehensive analysis of 139 putative sugar transporters retrieved from 10 complete genomes sheds new light on the diversity and evolution of this family. Using the phylogenetic lens, it is apparent that proteins have often been misassigned putative functions and this can now be corrected. It is also often seen that patterns of expansion of particular genes reflects the differential importance of transport of specific sugars (and related molecules) in different yeasts, and this knowledge also provides an improved resource for the selection or design of tailored transporters.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria João Sousa
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
| |
Collapse
|
11
|
Huang LG, Xiao BW, Wang WJ, Nian L, Wang HY, Yang WL, Zhou JP, Zhang B, Liu ZQ, Zheng YG. Multiplex modification of Yarrowia lipolytica for enhanced erythritol biosynthesis from glycerol through modularized metabolic engineering. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02906-0. [PMID: 37468580 DOI: 10.1007/s00449-023-02906-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Erythritol is a novelty 4-carbon sugar polyol and has great potential to be used as the precursor of some platform chemicals. The increasing cost of glucose poses researchers shifting insights to the cheaper biodiesel raw materials. Herein, we engineered a non-degradation, non-byproducts Yarrowia lipolytica for the erythritol production with high-titer from glycerol. Initially, the degradation and competition modules were blocked by URA3 counter-selection marker. Subsequently, a shortened biosynthetic pathway was explored to elevate its synthetic flux by multi-modules combination expression of functional genes. Furthermore, a screened glycerol transporter ScFPS1 was integrated into ERY6 genome to promote the glycerol uptake. The constructed strain ERY8 produced 176.66 g/L erythritol in the 5-L bioreactor with a yield and productivity of 0.631 g/g and 1.23 g/L/h, respectively, which achieved the highest fermentation production efficiency till date. This study proposed a novel multi-modules combination strategy for effectively engineering Y. lipolytica to produce erythritol using glycerol.
Collapse
Affiliation(s)
- Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo-Wen Xiao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wen-Jia Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lu Nian
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., Ltd, Kaihua, 324302, People's Republic of China
| | - Wu-Long Yang
- Zhejiang Huakang Pharmaceutical Co., Ltd, Kaihua, 324302, People's Republic of China
| | - Jun-Ping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
12
|
Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4. J Biol Chem 2023; 299:104569. [PMID: 36870684 PMCID: PMC10070915 DOI: 10.1016/j.jbc.2023.104569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
To cope with an increased external osmolarity, the budding yeast Saccharomyces cerevisiae activates the Hog1 mitogen-activated kinase (MAPK) through the High-Osmolarity Glycerol (HOG) pathway, which governs adaptive responses to osmostress. In the HOG pathway, two apparently redundant upstream branches, termed SLN1 and SHO1, activate cognate MAP3Ks Ssk2/22 and Ste11, respectively. These MAP3Ks, when activated, phosphorylate and thus activate the Pbs2 MAP2K, which in turn phosphorylates and activates Hog1. Previous studies have shown that protein tyrosine phosphatases (PTP) and the serine/threonine protein phosphatases type 2C (PP2C) negatively regulate the HOG pathway to prevent its excessive and inappropriate activation, which is detrimental to cell growth. The tyrosine phosphatases Ptp2 and Ptp3 dephosphorylate Hog1 at Tyr-176, whereas the PP2Cs Ptc1 and Ptc2 dephosphorylate Hog1 at Thr-174. In contrast, the identities of phosphatases that dephosphorylate Pbs2 remained less clear. Here, we examined the phosphorylation status of Pbs2 at the activating phosphorylation sites Ser-514 and Thr-518 (S514 and T518) in various mutants, both in the unstimulated and osmostressed conditions. Thus, we found that Ptc1-Ptc4 collectively regulate Pbs2 negatively, but each Ptc acts differently to the two phosphorylation sites in Pbs2. T518 is predominantly dephosphorylated by Ptc1, whereas the effect of Ptc2-Ptc4 could be seen only when Ptc1 is absent. Conversely, S514 can be dephosphorylated by any of Ptc1-4 to an appreciable extent. We also show that Pbs2 dephosphorylation by Ptc1 requires the adaptor protein Nbp2 that recruits Ptc1 to Pbs2, thus highlighting the complex processes involved in regulating adaptive responses to osmostress.
Collapse
|
13
|
Su Y, Xu C, Shea J, DeStephanis D, Su Z. Transcriptomic changes in single yeast cells under various stress conditions. BMC Genomics 2023; 24:88. [PMID: 36829151 PMCID: PMC9960639 DOI: 10.1186/s12864-023-09184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The stress response of Saccharomyces cerevisiae has been extensively studied in the past decade. However, with the advent of recent technology in single-cell transcriptome profiling, there is a new opportunity to expand and further understanding of the yeast stress response with greater resolution on a system level. To understand transcriptomic changes in baker's yeast S. cerevisiae cells under stress conditions, we sequenced 117 yeast cells under three stress treatments (hypotonic condition, glucose starvation and amino acid starvation) using a full-length single-cell RNA-Seq method. RESULTS We found that though single cells from the same treatment showed varying degrees of uniformity, technical noise and batch effects can confound results significantly. However, upon careful selection of samples to reduce technical artifacts and account for batch-effects, we were able to capture distinct transcriptomic signatures for different stress conditions as well as putative regulatory relationships between transcription factors and target genes. CONCLUSION Our results show that a full-length single-cell based transcriptomic analysis of the yeast may help paint a clearer picture of how the model organism responds to stress than do bulk cell population-based methods.
Collapse
Affiliation(s)
- Yangqi Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 28223, Charlotte, NC, USA
| | - Chen Xu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 28223, Charlotte, NC, USA
| | - Jonathan Shea
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 28223, Charlotte, NC, USA
| | - Darla DeStephanis
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 28223, Charlotte, NC, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 28223, Charlotte, NC, USA.
| |
Collapse
|
14
|
Yu L, Wen D, Yang Y, Qiu X, Xiong D, Tian C. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Pathogenicity, Stress Responses, and Development in Cytospora chrysosperma. PHYTOPATHOLOGY 2023; 113:239-251. [PMID: 36191174 DOI: 10.1094/phyto-04-22-0126-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that mediate cellular responses to various biotic and abiotic signals in plant-pathogenic fungi. Generally, there are three MAPKs in filamentous pathogenic fungi: Pmk1/Fus3/Kss1, Hog1, and Stl2. Our previous studies have shown that CcPmk1 is a core regulator of fungal pathogenicity in Cytospora chrysosperma, the causal agent of canker disease in a wide range of woody plants. Here, we identified and functionally characterized the other two MAPK genes (CcHog1 and CcSlt2) and then compared the transcriptional differences among these three MAPKs in C. chrysosperma. We found that the MAPKs shared convergent and distinct roles in fungal development, stress responses, and virulence. For example, CcHog1, CcSlt2, and CcPmk1 were all involved in conidiation and response to stresses, including hyperosmotic pressure, cell wall inhibition agents, and H2O2, but only CcPmk1 and CcSlt2 were required for hyphal growth and fungal pathogenicity. Transcriptomic analysis showed that numerous hyperosmosis- and cell wall-related genes significantly reduced their expression levels in ΔCcHog1 and ΔCcSlt2, respectively. Interestingly, RNA- and ribosome-related processes were significantly enriched in the upregulated genes of ΔCcSlt2, whereas they were significantly enriched in the downregulated genes of ΔCcPmk1. Moreover, two secondary metabolite gene clusters were significantly downregulated in ΔCcPmk1, ΔCcSlt2, and/or ΔCcHog1. Importantly, some virulence-associated genes were significantly downregulated in ΔCcPmk1 and/or ΔCcSlt2, such as candidate effector genes. Collectively, these results suggest that the similar and distinct phenotypes of each MAPK deletion mutant may result from the transcriptional regulation of a series of common or specific downstream genes, which provides a better understanding of the regulation network of MAPKs in C. chrysosperma.
Collapse
Affiliation(s)
- Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Identification of an l-Arabitol Transporter from Aspergillus niger. Biomolecules 2023; 13:biom13020188. [PMID: 36830558 PMCID: PMC9953744 DOI: 10.3390/biom13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
l-arabitol is an intermediate of the pentose catabolic pathway in fungi but can also be used as a carbon source by many fungi, suggesting the presence of transporters for this polyol. In this study, an l-arabitol transporter, LatA, was identified in Aspergillus niger. Growth and expression profiles as well as sugar consumption analysis indicated that LatA only imports l-arabitol and is regulated by the arabinanolytic transcriptional activator AraR. Moreover, l-arabitol production from wheat bran was increased in a metabolically engineered A. niger mutant by the deletion of latA, indicating its potential for improving l-arabitol-producing cell factories. Phylogenetic analysis showed that homologs of LatA are widely conserved in fungi.
Collapse
|
16
|
Regulation of yeast Snf1 (AMPK) by a polyhistidine containing pH sensing module. iScience 2022; 25:105083. [PMID: 36147951 PMCID: PMC9486060 DOI: 10.1016/j.isci.2022.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular regulation of pH is crucial for internal biological processes and for the import and export of ions and nutrients. In the yeast Saccharomyces cerevisiae, the major proton pump (Pma1) is regulated by glucose. Glucose is also an inhibitor of the energy sensor Snf1/AMPK, which is conserved in all eukaryotes. Here, we demonstrate that a poly-histidine (polyHIS) tract in the pre-kinase region (PKR) of Snf1 functions as a pH-sensing module (PSM) and regulates Snf1 activity. This regulation is independent from, and unaffected by, phosphorylation at T210, the major regulatory control of Snf1, but is controlled by the Pma1 plasma-membrane proton pump. By examining the PKR from additional yeast species, and by varying the number of histidines in the PKR, we determined that the polyHIS functions progressively. This regulation mechanism links the activity of a key enzyme with the metabolic status of the cell at any given moment.
Collapse
|
17
|
Shao L, Tan Y, Song S, Wang Y, Liu Y, Huang Y, Ren X, Liu Z. The role of Acpbs2 in the asexual sporulation, stress response and carbon metabolism of Aspergillus cristatus. J Basic Microbiol 2022; 62:1487-1503. [PMID: 36192145 DOI: 10.1002/jobm.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
Aspergillus cristatus is the dominant fungus during the fermentation of Fuzhuan brick tea, hypotonic conditions only induced its sexual development to produce ascospores, while hypertonic conditions only induced its asexual development to produce conidia, indicating that osmotic stress can regulate spore production in A. cristatus. However, the underlying regulatory mechanism is unclear. In this study, the roles of Acpbs2, which is homologous to pbs2 from Saccharomyces cerevisiae, in sporulation, stress responses, the color of colonies, and carbon metabolism were explored in A. cristatus. Deletion mutants of Acpbs2 were obtained by homologous recombination. The time required to produce conidia was delayed, and the number of conidia produced was significantly reduced in hypertonic media in ΔAcpbs2 by phenotypic observations, indicating that Acpbs2 plays a positive role in asexual development. Stress sensitivity tests showed that the order of the sensitivity of ΔAcpbs2 to different osmotic regulators was 3 M NaCl > 3 M sucrose > 3 M sorbitol. Moreover, the deletion mutants were sensitive to high oxidative stress. The growth of the Acpbs2 deletion mutant was inhibited under alkaline-pH stress, indicating that Acpbs2 is involved in high pH stress tolerance. Additionally, compared with the wild type, the colony color of the Acpbs2 deletion mutant became lighter. All the above developmental defects were reversed by the reintroduction of the Acpbs2 gene in ΔAcpbs2. Transcriptome data showed that Acpbs2 regulated the expression of several genes related to conidial development, osmotic stress, oxidative stress, and carbon metabolism. More importantly, the interaction between Acpbs2 and its downstream gene Achog1 was verified by yeast two-hybrid assays. We speculated that this interaction might regulate the osmotic stress response, the oxidative stress response, and asexual sporulation in A. cristatus, which will be one of the focuses of our future research.
Collapse
Affiliation(s)
- Lei Shao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yumei Tan
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Shiying Song
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yuchen Wang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yongxiang Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yonghui Huang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xiyi Ren
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou, China.,Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Chen T, Chen Z, Li Y, Zeng B, Zhang Z. A Novel Major Facilitator Superfamily Transporter Gene Aokap4 near the Kojic Acid Gene Cluster Is Involved in Growth and Kojic Acid Production in Aspergillus oryzae. J Fungi (Basel) 2022; 8:jof8080885. [PMID: 36012873 PMCID: PMC9410421 DOI: 10.3390/jof8080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Kojic acid is an important secondary metabolite of industrial importance produced by Aspergillus oryzae. The kojic acid gene cluster plays an essential role in kojic acid production, and harbors kojA, kojR and kojT. The deletion of kojT, encoding a major facilitator superfamily (MFS) transporter, did not completely abolish kojic acid production, implying that other transporters are required for the transport of kojic acid. The aim of this study is to look for the transporters involved in kojic acid production. Here, Aokap4 encoding a novel MFS transporter was identified, which was adjacent to kojT in the kojic acid gene cluster. The deletion of Aokap4 contributed to the hyphal growth, conidial production and biomass of A. oryzae. Moreover, Aokap4 is required for heat- and cell-wall-stress tolerance but not oxidative and osmotic stress. The disruption of Aokap4 impaired kojic acid production with the reduced expression of kojA, kojR and kojT. Furthermore, when kojT was deleted in the Aokap4-disrupted strain, the yield of kojic acid declined to the same level as that of the kojT-deletion mutant, whereas the production of kojic acid was recovered when kojT was overexpressed in the Aokap4 knockout strain, suggesting that kojT acts downstream of Aokap4. AoKap4 was the second identified MSF transporter involved in kojic acid production after kojT was found a decade ago. This study contributes to a better understanding of the biological roles of the MFS transporter and lays a foundation for future studies on kojic acid synthesis in A. oryzae.
Collapse
Affiliation(s)
- Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (B.Z.); (Z.Z.)
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Correspondence: (B.Z.); (Z.Z.)
| |
Collapse
|
19
|
Blomberg A. Yeast osmoregulation - glycerol still in pole position. FEMS Yeast Res 2022; 22:6655991. [PMID: 35927716 PMCID: PMC9428294 DOI: 10.1093/femsyr/foac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
In response to osmotic dehydration cells sense, signal, alter gene expression, and metabolically counterbalance osmotic differences. The main compatible solute/osmolyte that accumulates in yeast cells is glycerol, which is produced from the glycolytic intermediate dihydroxyacetone phosphate. This review covers recent advancements in understanding mechanisms involved in sensing, signaling, cell-cycle delays, transcriptional responses as well as post-translational modifications on key proteins in osmoregulation. The protein kinase Hog1 is a key-player in many of these events, however, there is also a growing body of evidence for important Hog1-independent mechanisms playing vital roles. Several missing links in our understanding of osmoregulation will be discussed and future avenues for research proposed. The review highlights that this rather simple experimental system—salt/sorbitol and yeast—has developed into an enormously potent model system unravelling important fundamental aspects in biology.
Collapse
Affiliation(s)
- Anders Blomberg
- Dept. of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| |
Collapse
|
20
|
Wang X, Zhao X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Huang H, Bai Y, Yao B, Su X, Zhang J. Metabolic engineering of Komagataella phaffii for synergetic utilization of glucose and glycerol. Yeast 2022; 39:412-421. [PMID: 35650013 DOI: 10.1002/yea.3793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaomin Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
21
|
Erian AM, Egermeier M, Marx H, Sauer M. Insights into the glycerol transport of Yarrowia lipolytica. Yeast 2022; 39:323-336. [PMID: 35348234 PMCID: PMC9311158 DOI: 10.1002/yea.3702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular membranes separate cells from the environment and hence, from molecules essential for their survival. To overcome this hurdle, cells developed specialized transport proteins for the transfer of metabolites across these membranes. Crucial metabolites that need to cross the membrane of each living organism, are the carbon sources. While many organisms prefer glucose as a carbon source, the yeast Yarrowia lipolytica seems to favor glycerol over glucose. The fast growth of Y. lipolytica on glycerol and its flexible metabolism renders this yeast a fascinating organism to study the glycerol metabolism. Based on sequence similarities to the known fungal glycerol transporter ScStl1p and glycerol channel ScFps1p, ten proteins of Y. lipolytica were found that are potentially involved in glycerol uptake. To evaluate, which of these proteins is able to transport glycerol in vivo, a complementation assay with a glycerol transport‐deficient strain of Saccharomyces cerevisiae was performed. Six of the ten putative transporters enabled the growth of S. cerevisiae stl1Δ on glycerol and thus, were confirmed as glycerol transporting proteins. Disruption of the transporters in Y. lipolytica abolished its growth on 25 g/L glycerol, but the individual expression of five of the identified glycerol transporters restored growth. Surprisingly, the transporter‐disrupted Y. lipolytica strain retained its ability to grow on high glycerol concentrations. This study provides insight into the glycerol uptake of Y. lipolytica at low glycerol concentrations through the characterization of six glycerol transporters and indicates the existence of further mechanisms active at high glycerol concentrations. Six proteins of Yarrowia lipolytica were identified as glycerol transporters. Two channel proteins and four active transporters facilitated glycerol uptake. Identified transporters are involved in glycerol uptake <25 g/L glycerol. Indication of further glycerol transporters in Y. lipolytica was obtained.
Collapse
Affiliation(s)
- Anna M Erian
- CD-Laboratory for Biotechnology of Glycerol, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Egermeier
- CD-Laboratory for Biotechnology of Glycerol, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hans Marx
- CD-Laboratory for Biotechnology of Glycerol, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
22
|
Schmidt JDR, Beitz E. Mutational Widening of Constrictions in a Formate-Nitrite/H + Transporter Enables Aquaporin-Like Water Permeability and Proton Conductance. J Biol Chem 2021; 298:101513. [PMID: 34929166 PMCID: PMC8749060 DOI: 10.1016/j.jbc.2021.101513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
The unrelated protein families of the microbial formate–nitrite transporters (FNTs) and aquaporins (AQP) likely adapted the same protein fold through convergent evolution. FNTs facilitate weak acid anion/H+ cotransport, whereas AQP water channels strictly exclude charged substrates including protons. The FNT channel–like transduction pathway bears two lipophilic constriction sites that sandwich a highly conserved histidine residue. Because of lacking experiments, the function of these constrictions is unclear, and the protonation status of the central histidine during substrate transport remains a matter of debate. Here, we introduced constriction-widening mutations into the prototypical FNT from Escherichia coli, FocA, and assayed formate/H+ transport properties, water/solute permeability, and proton conductance. We found that enlargement of these constrictions concomitantly decreased formate/formic acid transport. In contrast to wildtype FocA, the mutants were unable to make use of a transmembrane proton gradient as a driving force. A construct in which both constrictions were eliminated exhibited water permeability, similar to AQPs, although accompanied by a proton conductance. Our data indicate that the lipophilic constrictions mainly act as barriers to isolate the central histidine from the aqueous bulk preventing protonation via proton wires. These results are supportive of an FNT transport model in which the central histidine is uncharged, and weak acid substrate anion protonation occurs in the vestibule regions of the transporter before passing the constrictions.
Collapse
Affiliation(s)
- Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
23
|
Aliyu H, Gorte O, Neumann A, Ochsenreither K. Global Transcriptome Profile of the Oleaginous Yeast Saitozyma podzolica DSM 27192 Cultivated in Glucose and Xylose. J Fungi (Basel) 2021; 7:758. [PMID: 34575796 PMCID: PMC8466774 DOI: 10.3390/jof7090758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Unlike conventional yeasts, several oleaginous yeasts, including Saitozyma podzolica DSM 27192, possess the innate ability to grow and produce biochemicals from plant-derived lignocellulosic components such as hexose and pentose sugars. To elucidate the genetic basis of S. podzolica growth and lipid production on glucose and xylose, we performed comparative temporal transcriptome analysis using RNA-seq method. Approximately 3.4 and 22.2% of the 10,670 expressed genes were differentially (FDR < 0.05, and log2FC > 1.5) expressed under batch and fed batch modes, respectively. Our analysis revealed that a higher number of sugar transporter genes were significantly overrepresented in xylose relative to glucose-grown cultures. Given the low homology between proteins encoded by most of these genes and those of the well-characterised transporters, it is plausible to conclude that S. podzolica possesses a cache of putatively novel sugar transporters. The analysis also suggests that S. podzolica potentially channels carbon flux from xylose via both the non-oxidative pentose phosphate and potentially via the first steps of the Weimberg pathways to yield xylonic acid. However, only the ATP citrate lyase (ACL) gene showed significant upregulation among the essential oleaginous pathway genes under nitrogen limitation in xylose compared to glucose cultivation. Combined, these findings pave the way toward the design of strategies or the engineering of efficient biomass hydrolysate utilization in S. podzolica for the production of various biochemicals.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| | | | | | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| |
Collapse
|
24
|
Tang C, Li W, Klosterman SJ, Wang Y. Transcriptome Variations in Verticillium dahliae in Response to Two Different Inorganic Nitrogen Sources. Front Microbiol 2021; 12:712701. [PMID: 34394062 PMCID: PMC8355529 DOI: 10.3389/fmicb.2021.712701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. The main focus of the research to control this fungus has been aimed at infection processes such as penetration peg formation and effector secretion, but the ability of the fungus to acquire and utilize nutrients are often overlooked and may hold additional potential to formulate new disease control approaches. Little is known about the molecular mechanisms of nitrogen acquisition and assimilation processes in V. dahliae. In this present study, RNA sequencing and gene expression analysis were used to examine differentially expressed genes in response to the different nitrogen sources, nitrate and ammonium, in V. dahliae. A total of 3244 and 2528 differentially expressed genes were identified in response to nitrate and ammonium treatments, respectively. The data indicated nitrate metabolism requires additional energy input while ammonium metabolism is accompanied by reductions in particular cellular processes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs during nitrate metabolism revealed that many of the genes encoded those involved in protein biosynthetic and metabolic processes, especially ribosome and RNA polymerase biosynthesis, but also other processes including transport and organonitrogen compound metabolism. Analysis of DEGs in the ammonium treatment indicated that cell cycle, oxidoreductase, and certain metabolic activities were reduced. In addition, DEGs participating in the utilization of both nitrate and ammonium were related to L-serine biosynthesis, energy-dependent multidrug efflux pump activity, and glycerol transport. We further showed that the mutants of three differentially expressed transcription factors (VdMcm1, VdHapX, and VDAG_08640) exhibited abnormal phenotypes under nitrate and ammonium treatment compared with the wild type strain. Deletion of VdMcm1 displayed slower growth when utilizing both nitrogen sources, while deletion of VdHapX and VDAG_08640 only affected nitrate metabolism, inferring that nitrogen assimilation required regulation of bZIP transcription factor family and participation of cell cycle. Taken together, our findings illustrate the convergent and distinctive regulatory mechanisms between preferred (ammonium) and alternative nitrogen (nitrate) metabolism at the transcriptome level, leading to better understanding of inorganic nitrogen metabolism in V. dahliae.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wenwen Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA, United States
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Lee DW, Hong CP, Thak EJ, Park SG, Lee CH, Lim JY, Seo JA, Kang HA. Integrated genomic and transcriptomic analysis reveals unique mechanisms for high osmotolerance and halotolerance in Hyphopichia yeast. Environ Microbiol 2021; 23:3499-3522. [PMID: 33830651 DOI: 10.1111/1462-2920.15464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022]
Abstract
The yeast species Hyphopichia is common in nature and strongly competitive under harsh environmental conditions. Here, we characterized Hyphopichia burtonii KJJ43 and H. pseudoburtonii KJS14, which exhibit strong halotolerance, using genomic and transcriptomic analyses. The genomes of H. burtonii and H. pseudoburtonii comprised eight chromosomes with 85.17% nucleotide identity and significant divergence in synteny. Notably, both Hyphopichia genomes possessed extended gene families of amino acid permeases and ATP-binding cassette (ABC) transporters, whose dynamic expression patterns during osmotic stress were revealed using transcriptome profiling. Intriguingly, we found unique features of the HOG pathway activated by Hog1p even under non-osmotic stress conditions and the upregulation of cytosolic Gpd1 protein during osmotic stress. Associated with hyperfilamentation growth under high osmotic conditions, a set of genes in the FLO family with induced expression in response to NaCl, KCl, and sorbitol supplementation were identified. Moreover, comparative transcriptome analysis reveals the NaCl-specific induction of genes involved in amino acid biosynthesis and metabolism, particularly BAT2. This suggests the potential association between oxoacid reaction involving branched-chain amino acids and osmotolerance. The combined omics analysis of two Hyphopichia species provides insights into the novel mechanisms involved in salt and osmo-stress tolerance exploited by diverse eukaryotic organisms.
Collapse
Affiliation(s)
- Dong Wook Lee
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Eun Jung Thak
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Hyun Ah Kang
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
26
|
Yuzawa T, Shirai T, Orishimo R, Kawai K, Kondo A, Hirasawa T. 13C-metabolic flux analysis in glycerol-assimilating strains of Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2021; 67:142-149. [PMID: 33967166 DOI: 10.2323/jgam.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glycerol is an attractive raw material for the production of useful chemicals using microbial cells. We previously identified metabolic engineering targets for the improvement of glycerol assimilation ability in Saccharomyces cerevisiae based on adaptive laboratory evolution (ALE) and transcriptome analysis of the evolved cells. We also successfully improved glycerol assimilation ability by the disruption of the RIM15 gene encoding a Greatwall protein kinase together with overexpression of the STL1 gene encoding the glycerol/H+ symporter. To understand glycerol assimilation metabolism in the evolved glycerol-assimilating strains and STL1-overexpressing RIM15 disruptant, we performed metabolic flux analysis using 13C-labeled glycerol. Significant differences in metabolic flux distributions between the strains obtained from the culture after 35 and 85 generations in ALE were not found, indicating that metabolic flux changes might occur in the early phase of ALE (i.e., before 35 generations at least). Similarly, metabolic flux distribution was not significantly changed by RIM15 gene disruption. However, fluxes for the lower part of glycolysis and the TCA cycle were larger and, as a result, flux for the pentose phosphate pathway was smaller in the STL1-overexpressing RIM15 disruptant than in the strain obtained from the culture after 85 generations in ALE. It could be effective to increase flux for the pentose phosphate pathway to improve the glycerol assimilation ability in S. cerevisiae.
Collapse
Affiliation(s)
- Taiji Yuzawa
- School of Life Science and Technology, Tokyo Institute of Technology
| | | | | | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN.,Graduate School of Science, Technology and Innovation, Kobe University
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
27
|
Donzella L, Varela JA, Sousa MJ, Morrissey JP. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform. FEMS Yeast Res 2021; 21:6247623. [PMID: 33890624 PMCID: PMC8110514 DOI: 10.1093/femsyr/foab026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
The capacity of yeasts to assimilate xylose or arabinose is strongly dependent on plasma membrane transport proteins. Because pentoses comprise a substantial proportion of available sugars in lignocellulosic hydrolysates, their utilisation is centrally important for the development of second generation biorefineries. Relatively few native pentose transporters have been studied and there is intense interest in expanding the repertoire. To aid the identification of novel transporters, we developed a screening platform in the native pentose-utilising yeast Kluyveromyces marxianus. This involved the targeted deletion of twelve transporters of the major facilitator superfamily (MFS) and application of a synthetic biology pipeline for rapid testing of candidate pentose transporters. Using this K. marxianus ΔPT platform, we identified several K. marxianus putative xylose or arabinose transporter proteins that recovered a null strain's ability to growth on these pentoses. Four proteins of the HGT-family were able to support growth in media with high or low concentrations of either xylose or arabinose, while six HXT-like proteins displayed growth only at high xylose concentrations, indicating solely low affinity transport activity. The study offers new insights into the evolution of sugar transporters in yeast and expands the set of native pentose transporters for future functional and biotechnological studies.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland.,Centre of Environmental and Molecular Biology, Department of Biology, University of Minho, Campus of Gualtar, R. da Universidade, Braga 4710-057, Portugal
| | - Javier A Varela
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland
| | - Maria João Sousa
- Centre of Environmental and Molecular Biology, Department of Biology, University of Minho, Campus of Gualtar, R. da Universidade, Braga 4710-057, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
28
|
Najjarzadeh N, Matsakas L, Rova U, Christakopoulos P. How Carbon Source and Degree of Oligosaccharide Polymerization Affect Production of Cellulase-Degrading Enzymes by Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2021; 12:652655. [PMID: 33841380 PMCID: PMC8032549 DOI: 10.3389/fmicb.2021.652655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulases are a group of enzymes responsible for the degradation of cellulose, which is one of the most abundant polymers on Earth. The three main groups of cellulases are endoglucosidases, exoglucosidases, and β-glucosidases; however, the mechanism of induction of these enzymes remains poorly characterized. Cellooligosaccharides are among the main inducers of these enzymes in filamentous fungi, yet it is not clear how their degree of polymerization may affect the strength of induction. In the present study, we investigated the effect of different carbohydrate-based inducers, such as lactose, sophorose, cellooligosaccharides, and xylooligosacharides, characterized by different concentrations and degree of polymerization, on cellulases production by the fungus Fusarium oxysporum f. sp. lycopersici, which is one of the most studied lignocellulose degrading fungi with the ability to consume both cellulose and hemicellulose. Moreover, the effect of carbon source on cellulase induction was assessed by growing the biomass on sucrose or glycerol. Results showed a correlation between induction efficiency and the cellooligosaccharides' concentration and size, as well as the carbon source available. Specifically, cellotetraose was a better inducer when sucrose was the carbon source, while cellobiose yielded a better result on glycerol. These findings can help optimize industrial cellulase production.
Collapse
Affiliation(s)
| | | | | | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
29
|
The role of transport proteins in the production of microbial glycolipid biosurfactants. Appl Microbiol Biotechnol 2021; 105:1779-1793. [PMID: 33576882 DOI: 10.1007/s00253-021-11156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Several microorganisms are currently being used as production platform for glycolipid biosurfactants, providing a greener alternative to chemical biosurfactants. One of the reasons why these processes are commercially competitive is the fact that microbial producers can efficiently export their product to the extracellular environment, reaching high product titers. Glycolipid biosynthetic genes are often found in a dedicated cluster, amidst which genes encoding a dedicated transporter committed to shuttle the glycolipid to the extracellular environment are often found, as is the case for many other secondary metabolites. Knowing this, one can rely on gene clustering features to screen for novel putative transporters, as described and performed in this review. The above strategy proves to be very powerful to identify glycolipid transporters in fungi but is less valid for bacterial systems. Indeed, the genetics of these export systems are currently largely unknown, but some hints are given. Apart from the direct export of the glycolipid, several other transport systems have an indirect effect on glycolipid production. Specific importers dictate which hydrophilic and hydrophobic substrates can be used for production and influence the final yields. In eukaryotes, cellular compartmentalization allows the assembly of glycolipid building blocks in a highly specialized and efficient way. Yet, this requires controlled transport across intracellular membranes. Next to the direct export of glycolipids, the current state of the art regarding this indirect involvement of transporter systems in microbial glycolipid synthesis is summarized in this review. KEY POINTS: • Transporters are directly and indirectly involved in microbial glycolipid synthesis. • Yeast glycolipid transporters are found in their biosynthetic gene cluster. • Hydrophilic and hydrophobic substrate uptake influence microbial glycolipid synthesis.
Collapse
|
30
|
Abstract
Modern industrial winemaking is based on the use of specific starters of wine strains. Commercial wine strains present several advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality and wine safety, it has become increasingly critical to develop new yeast strains. In the last decades, new possibilities arose for creating upgraded wine yeasts in the laboratory, resulting in the development of strains with better fermentation abilities, able to improve the sensory quality of wines and produce wines targeted to specific consumers, considering their health and nutrition requirements. However, only two genetically modified (GM) wine yeast strains are officially registered and approved for commercial use. Compared with traditional genetic engineering methods, CRISPR/Cas9 is described as efficient, versatile, cheap, easy-to-use, and able to target multiple sites. This genetic engineering technique has been applied to Saccharomyces cerevisiae since 2013. In this review, we aimed to overview the use of CRISPR/Cas9 editing technique in wine yeasts to combine develop phenotypes able to increase flavor compounds in wine without the development of off-flavors and aiding in the creation of “safer wines.”
Collapse
|
31
|
Tulha J, Amorim-Rodrigues M, Esquembre LA, Rauch S, Tamás MJ, Lucas C. Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1. FEMS Yeast Res 2020; 21:6045508. [PMID: 33355361 DOI: 10.1093/femsyr/foaa070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae MBOAT O-acyltransferase Gup1 is involved in many processes, including cell wall and membrane composition and integrity, and acetic acid-induced cell death. Gup1 was previously shown to interact physically with the mitochondrial membrane VDAC (Voltage-Dependent Anion Channel) protein Por1 and the ammonium transceptor Mep2. By co-immunoprecipitation, the eisosome core component Pil1 was identified as a novel physical interaction partner of Gup1. The expression of PIL1 and Pil1 protein levels were found to be unaffected by GUP1 deletion. In ∆gup1 cells, Pil1 was distributed in dots (likely representing eisosomes) in the membrane, identically to wt cells. However, ∆gup1 cells presented 50% less Pil1-GFP dots/eisosomes, suggesting that Gup1 is important for eisosome formation. The two proteins also interact genetically in the maintenance of cell wall integrity, and during arsenite and acetic acid exposure. We show that Δgup1 Δpil1 cells take up more arsenite than wt and are extremely sensitive to arsenite and to acetic acid treatments. The latter causes a severe apoptotic wt-like cell death phenotype, epistatically reverting the ∆gup1 necrotic type of death. Gup1 and Pil1 are thus physically, genetically and functionally connected.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Mariana Amorim-Rodrigues
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Lidia Alejo Esquembre
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemihuset 412 96 Gothenburg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil and Environmental Engineering, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemihuset 412 96 Gothenburg, Sweden
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Lahue C, Madden AA, Dunn RR, Smukowski Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 2020; 11:584718. [PMID: 33262788 PMCID: PMC7686800 DOI: 10.3389/fgene.2020.584718] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been instrumental in the fermentation of foods and beverages for millennia. In addition to fermentations like wine, beer, cider, sake, and bread, S. cerevisiae has been isolated from environments ranging from soil and trees, to human clinical isolates. Each of these environments has unique selection pressures that S. cerevisiae must adapt to. Bread dough, for example, requires S. cerevisiae to efficiently utilize the complex sugar maltose; tolerate osmotic stress due to the semi-solid state of dough, high salt, and high sugar content of some doughs; withstand various processing conditions, including freezing and drying; and produce desirable aromas and flavors. In this review, we explore the history of bread that gave rise to modern commercial baking yeast, and the genetic and genomic changes that accompanied this. We illustrate the genetic and phenotypic variation that has been documented in baking strains and wild strains, and how this variation might be used for baking strain improvement. While we continue to improve our understanding of how baking strains have adapted to bread dough, we conclude by highlighting some of the remaining open questions in the field.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Anne A. Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
33
|
Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 2020; 7:bioengineering7040128. [PMID: 33066502 PMCID: PMC7712467 DOI: 10.3390/bioengineering7040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The most famous yeast of all, Saccharomyces cerevisiae, has been used by humankind for at least 8000 years, to produce bread, beer and wine, even without knowing about its existence. Only in the last century we have been fully aware of the amazing power of this yeast not only for ancient uses but also for biotechnology purposes. In the last decades, wine culture has become and more demanding all over the world. By applying as powerful a biotechnological tool as genetic engineering in S. cerevisiae, new horizons appear to develop fresh, improved, or modified wine characteristics, properties, flavors, fragrances or production processes, to fulfill an increasingly sophisticated market that moves around 31.4 billion € per year.
Collapse
|
34
|
Erian AM, Egermeier M, Rassinger A, Marx H, Sauer M. Identification of the citrate exporter Cex1 of Yarrowia lipolytica. FEMS Yeast Res 2020; 20:5912837. [DOI: 10.1093/femsyr/foaa055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Yarrowia lipolytica is a yeast with many talents, one of them being the production of citric acid. Although the citrate biosynthesis is well studied, little is known about the transport mechanism by which citrate is exported. To gain better insight into this mechanism, we set out to identify a transporter involved in citrate export of Y. lipolytica. A total of five proteins were selected for analysis based on their similarity to a known citrate exporter, but neither a citrate transport activity nor any other phenotypic function could be attributed to them. Differential gene expression analysis of two strains with a distinct citrate productivity revealed another three putative transporters, one of which is YALI0D20196p. Disrupting YALI0D20196g in Y. lipolytica abolished citrate production, while extrachromosomal expression enhanced citrate production 5.2-fold in a low producing wildtype. Furthermore, heterologous expression of YALI0D20196p in the non-citrate secreting yeast Saccharomyces cerevisiae facilitated citrate export. Likewise, expression of YALI0D20196p complemented the ability to secrete citrate in an export-deficient strain of Aspergillus niger, confirming a citrate export function of YALI0D20196p. This report on the identification of the first citrate exporter in Y. lipolytica, termed Cex1, represents a valuable starting point for further investigations of the complex transport processes in yeasts.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Egermeier
- CD-Laboratory for Biotechnology of Glycerol, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Alice Rassinger
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Hans Marx
- CD-Laboratory for Biotechnology of Glycerol, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
35
|
Zhang B, Ren L, Wang H, Xu D, Zeng X, Li F. Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme Microb Technol 2020; 140:109641. [PMID: 32912693 DOI: 10.1016/j.enzmictec.2020.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. In this study, the STL1 homolog KmSTL1, encoding a putative glycerol transporter contributing to cell osmo-tolerance, was identified in Kluyveromyces marxianus NBRC1777. We constructed the KmSTL1, KmGPD1, and KmFPS1 single-deletion mutants and the KmSTL1/KmGPD1 and KmSTL1/KmFPS1 double-deletion mutants of K. marxianus. Deletion of KmSTL1 or KmGPD1 resulted in K. marxianus cell sensitization to hyperosmotic stress, whereas deletion of KmFPS1 improved stress tolerance. The expression of KmSTL1 was osmotically induced, whereas that of KmFPS1 was osmotically inhibited. The expression of KmGPD1 was constitutive and continuous in the ΔKmSTL1 mutant strain but inhibited in the ΔKmFPS1 mutant strain due to feedback suppression by glycerol. In summary, our findings indicated that K. marxianus would increase glycerol synthesis by increasing GPD1 expression, increase glycerol import from the extracellular environment by increasing STL1 expression, and reduce glycerol efflux by reducing FPS1 expression under hyperosmotic stress.
Collapse
Affiliation(s)
- Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Haonan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
36
|
Comparison of the Glycolytic and Alcoholic Fermentation Pathways of Hanseniaspora vineae with Saccharomyces cerevisiae Wine Yeasts. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hanseniaspora species can be isolated from grapes and grape musts, but after the initiation of spontaneous fermentation, they are displaced by Saccharomyces cerevisiae. Hanseniaspora vineae is particularly valuable since this species improves the flavour of wines and has an increased capacity to ferment relative to other apiculate yeasts. Genomic, transcriptomic, and metabolomic studies in H. vineae have enhanced our understanding of its potential utility within the wine industry. Here, we compared gene sequences of 12 glycolytic and fermentation pathway enzymes from five sequenced Hanseniaspora species and S. cerevisiae with the corresponding enzymes encoded within the two sequenced H. vineae genomes. Increased levels of protein similarity were observed for enzymes of H. vineae and S. cerevisiae, relative to the remaining Hanseniaspora species. Key differences between H. vineae and H. uvarum pyruvate kinase enzymes might explain observed differences in fermentative capacity. Further, the presence of eight putative alcohol dehydrogenases, invertase activity, and sulfite tolerance are distinctive characteristics of H. vineae, compared to other Hanseniaspora species. The definition of two clear technological groups within the Hanseniaspora genus is discussed within the slow and fast evolution concept framework previously discovered in these apiculate yeasts.
Collapse
|
37
|
Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom 2020; 6:mgen000415. [PMID: 32735212 PMCID: PMC7641419 DOI: 10.1099/mgen.0.000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.
Collapse
Affiliation(s)
- Irene Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Elena Requena
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Present address: Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña Km 7, 28040 Madrid, Spain
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, USA
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
38
|
Glycerol transporter 1 (Gt1) and zinc-regulated transporter 1 (Zrt1) function in different modes for zinc homeostasis in Komagataella phaffii (Pichia pastoris). Biotechnol Lett 2020; 42:2413-2423. [PMID: 32661657 DOI: 10.1007/s10529-020-02964-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To identify the zinc transport function of the membrane proteins Gt1 and Zrt1 in Komagataella phaffii (Pichia pastoris) and study their regulatory mode. RESULTS Two membrane proteins that might have zinc transport function were found in K. phaffii. GT1 was known to encode a glycerol transporter belonging to the Major Facilitator Superfamily. ZRT1 was predicted to resemble the zinc transporter gene in Saccharomyces cerevisiae. Consistent with the prediction, protein plasma-membrane localizations were confirmed by ultracentrifugation and confocal microscopy. Their zinc binding abilities were identified by ITC in vitro, and the impaired zinc uptake activity caused by their deficiencies was confirmed by zinc fluorescence quantification in vivo. Furthermore, zinc excess could turn the two channels off, while zinc deficiency induced their expressions. Gt1 could only function to maintain zinc homeostasis in glycerol, while the block of Gt1 function might lead to Zrt1 upregulation in glucose. CONCLUSIONS The zinc transport capabilities of Gt1 and Zrt1 were identified in vivo and in vitro. Their regulatory mode to maintain zinc homeostasis in K. phaffii is a new inspiration.
Collapse
|
39
|
Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:7273-7311. [PMID: 32651601 DOI: 10.1007/s00253-020-10680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/21/2023]
Abstract
System-wide interactions in living cells and discovery of the diverse roles of transcriptional regulatory proteins that are mediator proteins with catalytic domains and regulatory subunits and transcription factors in the cellular pathways have become crucial for understanding the cellular response to environmental conditions. This review provides information for future metabolic engineering strategies through analyses on the highly interconnected regulatory networks in Saccharomyces cerevisiae and Pichia pastoris and identifying their components. We discuss the current knowledge on the carbon catabolite repression (CCR) mechanism, interconnecting regulatory system of the central metabolic pathways that regulate cell metabolism based on nutrient availability in the industrial yeasts. The regulatory proteins and their functions in the CCR signalling pathways in both yeasts are presented and discussed. We highlight the importance of metabolic signalling networks by signifying ways on how effective engineering strategies can be designed for generating novel regulatory circuits, furthermore to activate pathways that reconfigure the network architecture. We summarize the evidence that engineering of multilayer regulation is needed for directed evolution of the cellular network by putting the transcriptional control into a new perspective for the regulation of central carbon metabolism of the industrial yeasts; furthermore, we suggest research directions that may help to enhance production of recombinant products in the widely used, creatively engineered, but relatively less studied P. pastoris through de novo metabolic engineering strategies based on the discovery of components of signalling pathways in CCR metabolism. KEY POINTS: • Transcriptional regulation and control is the key phenomenon in the cellular processes. • Designing de novo metabolic engineering strategies depends on the discovery of signalling pathways in CCR metabolism. • Crosstalk between pathways occurs through essential parts of transcriptional machinery connected to specific catalytic domains. • In S. cerevisiae, a major part of CCR metabolism is controlled through Snf1 kinase, Glc7 phosphatase, and Srb10 kinase. • In P. pastoris, signalling pathways in CCR metabolism have not yet been clearly known yet. • Cellular regulations on the transcription of promoters are controlled with carbon sources.
Collapse
|
40
|
Wang X, Wang Y, Ning S, Shi S, Tan L. Improving Azo Dye Decolorization Performance and Halotolerance of Pichia occidentalis A2 by Static Magnetic Field and Possible Mechanisms Through Comparative Transcriptome Analysis. Front Microbiol 2020; 11:712. [PMID: 32431675 PMCID: PMC7216737 DOI: 10.3389/fmicb.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
A halotolerant yeast, Pichia occidentalis A2, was recently isolated that can decolorize various azo dyes. The azo dye decolorization performance of this strain was characterized, including the degradation pathway and detoxification effects of this yeast. Additionally, the effect of static magnetic field (SMF) on this decolorization process was investigated. Activities of key enzymes were analyzed to estimate the change of metabolic activity. Furthermore, possible mechanisms were analyzed through detecting differentially expressed genes between yeast A2 in the absence and presence of SMF. The results indicated that yeast A2 displayed the optimal decolorization performance when the concentrations (in g/L) of glucose, (NH4)2SO4, yeast extract, and NaCl were 4.0, 1.0, 0.1, and ≤30.0, respectively. Meanwhile, the optimal rotation speed, temperature, and pH were 160 rpm, 30°C, and 5.0, respectively. Acid Red B was decolorized and detoxified by yeast A2 through successive steps, including cleavage of the naphthalene-amidine bond, reductive deamination, oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene, and tricarboxylic acid cycle. The dye decolorization efficiency and halotolerance of yeast A2 were enhanced by 206.3 mT SMF. The activities of manganese peroxidase, and laccase were elevated 1.37- and 1.16-fold by 206.3 mT SMF, but lignin peroxidase activity showed little change. It was suggested from the transcriptome sequence that the enhanced halotolerance might be related to the upregulated genes encoding the enzymes or functional proteins related to intracellular synthesis and accumulation of glycerol.
Collapse
Affiliation(s)
| | | | | | | | - Liang Tan
- School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
41
|
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 2020; 39:e103444. [PMID: 32011004 PMCID: PMC7049814 DOI: 10.15252/embj.2019103444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11‐Pbs2‐Hog1 MAPK cascade and the Ssk2/Ssk22‐Pbs2‐Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr‐518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser‐514 and Thr‐518 under optimal osmostress conditions. Mono‐phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2‐Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone‐to‐Hog1 crosstalk in the absence of osmostress. We also report that the rapid‐and‐transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Aßkamp MR, Klein M, Nevoigt E. Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains. FEMS Yeast Res 2019; 19:5420478. [PMID: 30915433 DOI: 10.1093/femsyr/foz026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Glycerol is an attractive substrate for microbial fermentations due to its higher degree of reduction compared to glucose. The replacement of the native FAD-dependent glycerol catabolic pathway in Saccharomyces cerevisiae by an artificial NADH-delivering dihydroxyacetone (DHA) pathway is supposed to facilitate the capturing of electrons in fermentation products. This requires that the electrons from the cytosolic NADH are not exclusively transferred to oxygen. However, the external NADH dehydrogenases (Nde1/2) and the L-glycerol 3-phosphate shuttle (composed of Gpd1/2 and Gut2), both coupled to the respiratory chain, are known to contribute to cytosolic NAD+ regeneration during growth on non-fermentable carbon sources. In order to evaluate the role of these mechanisms during growth on glycerol, we deleted GPD1/2, GUT2 as well as NDE1/2, separately and in combinations in both the glycerol-utilizing wild-type strain CBS 6412-13A and the corresponding engineered strain CBS DHA in which glycerol is catabolized by the DHA pathway. Particularly, the nde1Δ mutants showed a significant reduction in growth rate and the nde1∆ nde2∆ double deletion mutants did not grow at all in synthetic glycerol medium. The current work also demonstrates a positive impact of deleting NDE1 on the production of the fermentation product 1,2-propanediol in an accordingly engineered S. cerevisiae strain.
Collapse
Affiliation(s)
- Maximilian R Aßkamp
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
43
|
Investigating the Influence of Glycerol on the Utilization of Glucose in Yarrowia lipolytica Using RNA-Seq-Based Transcriptomics. G3-GENES GENOMES GENETICS 2019; 9:4059-4071. [PMID: 31628151 PMCID: PMC6893183 DOI: 10.1534/g3.119.400469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycerol is considered as a promising substrate for biotechnological applications and the non-conventional yeast Yarrowia lipolytica has been used extensively for the valorization of this compound. Contrary to S. cerevisiae, Y. lipolytica seems to prefer glycerol over glucose and it has been reported previously that the presence of glycerol can suppress the consumption of glucose in co-substrate fermentations. Based on these observations, we hypothesized glycerol repression-like effects in Y. lipolytica, which are converse to well described carbon repression mechanisms ensuring the prioritized use of glucose (e.g., in S. cerevisiae). We therefore aimed to investigate this effect on the level of transcription. Strains varying in the degree of glucose suppression were chosen and characterized in high-resolution growth screenings, resulting in the detection of different growth phenotypes under glycerol-glucose mixed conditions. Two strains, IBT and W29, were selected and cultivated in chemostats using glucose, glycerol and glucose/glycerol as carbon sources, followed by an RNA-Seq-based transcriptome analysis. We could show that several transporters were significantly higher expressed in W29, which is potentially related to the observed physiological differences. However, most of the expression variation between the strains were regardless of the carbon source applied, and cross-comparisons revealed that the strain-specific carbon source responses underwent in the opposite direction. A deeper analysis of the substrate specific carbon source response led to the identification of several differentially expressed genes with orthologous functions related to signal transduction and transcriptional regulation. This study provides an initial investigation on potentially novel carbon source regulation mechanisms in yeasts.
Collapse
|
44
|
Martho KF, Brustolini OJB, Vasconcelos AT, Vallim MA, Pascon RC. The Glycerol Phosphatase Gpp2: A Link to Osmotic Stress, Sulfur Assimilation and Virulence in Cryptococcus neoformans. Front Microbiol 2019; 10:2728. [PMID: 31849880 PMCID: PMC6901960 DOI: 10.3389/fmicb.2019.02728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an opportunist fungal pathogen that causes meningoencephalitis in immunocompromised patients. During infection, this basidiomycete yeast has to adapt to several adverse conditions, especially nutrient availability. The interruption on various amino acid biosynthetic pathways and on amino acid uptake causes reduced viability, inability to cope with various stresses, failure in virulence factors expression and avirulence in animal model of infection. The sulfur amino acid biosynthesis and uptake is an important feature for pathogen survival in vivo and in vitro. Our previous work demonstrates that C. neoformans Cys3 BZip transcription factor controls the gene expression in several steps of the sulfur assimilation and sulfur amino acid biosynthesis. Also, we have shown that Gpp2 phosphatase modulates Cys3 activity. In Saccharomyces cerevisiae Gpp2 is induced in response to hyper osmotic or oxidative stress and during diauxic shift. In this work, we will show that, in C. neoformans, Gpp2 is required to respond to stresses, mainly osmotic stress; also its transcription is induced during exposure to NaCl. Global transcriptional profile of gpp2Δ by RNAseq shows that CYS3 and other genes in the sulfur assimilation pathway are up regulated, which is consistent with our previous report, in which Gpp2 acts by avoiding Cys3 accumulation and nuclear localization. In addition, several transporters genes, especially amino acid permeases and oxidative stress genes are induced in the gpp2Δ strain; on the contrary, genes involved in glucose and tricarboxylic acid metabolism are down regulated. gpp2Δ strain fails to express virulence factors, as melanin, phospholipase, urease and has virulence attenuation in Galleria mellonella. Our data suggest that Gpp2 is an important factor for general pathogen adaptation to various stresses and also to the host, and perhaps it could be an interesting target for therapeutic use.
Collapse
Affiliation(s)
- Kevin Felipe Martho
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Otávio J B Brustolini
- Laboratório Nacional de Computação Científica - LNCC, Labinfo - Laboratório de Bioinformática, Petrópolis, Brazil
| | - Ana Tereza Vasconcelos
- Laboratório Nacional de Computação Científica - LNCC, Labinfo - Laboratório de Bioinformática, Petrópolis, Brazil
| | - Marcelo A Vallim
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renata C Pascon
- Department of Biological Sciences, Campus Diadema, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Li Y, He P, Tian C, Wang Y. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides. Fungal Genet Biol 2019; 135:103289. [PMID: 31704368 DOI: 10.1016/j.fgb.2019.103289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023]
Abstract
The HOG (high-osmolarity glycerol) pathway is critical for the appropriate adaptation to adverse conditions. Here, we demonstrated that the deletion of CgHog1 resulted in enhanced sensitivity to osmotic stress and increased resistance to fludioxonil in the poplar anthracnose fungus Colletotrichum gloeosporioides. The accumulation of chitin around hyphal tips was obviously decreased in the ΔCgHog1 strain under sorbitol, whereas it strongly was increased in the response to fludioxonil compared with the wild type. To investigate the underlying mechanism of CgHog1-mediated adaption to osmotic stress and fludioxonil, transcriptomic profiles were performed in both the ΔCgHog1 strain and the wild type under the treatment of sorbitol and fludioxonil, respectively. Under sorbitol, genes associated with glycolysis, lipid metabolism, and accumulation of soluble sugars and amino acids were differentially expressed; under fludioxonil, vesicle trafficking-related genes were highly downregulated in the ΔCgHog1 strain, which was consistent with abnormal vacuoles distribution and morphology of hyphae, indicating that the growth defect caused by fludioxonil may be associated with disruption of endocytosis. Taken together, we elucidated the adaptation mechanisms of how CgHog1 regulates appropriate response to sorbitol and fludioxonil via different metabolism pathways. These findings extend our insights into the HOG pathway in fungi.
Collapse
Affiliation(s)
- Yangfan Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Puhuizhong He
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
46
|
Aßkamp MR, Klein M, Nevoigt E. Saccharomyces cerevisiae exhibiting a modified route for uptake and catabolism of glycerol forms significant amounts of ethanol from this carbon source considered as 'non-fermentable'. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:257. [PMID: 31695748 PMCID: PMC6822349 DOI: 10.1186/s13068-019-1597-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Due to its inevitable formation during biodiesel production and its relatively high degree of reduction, glycerol is an attractive carbon source for microbial fermentation processes. However, glycerol is catabolized in a fully respiratory manner by the eukaryotic platform organism Saccharomyces cerevisiae. We previously engineered S. cerevisiae strains to favor fermentative metabolism of glycerol by replacing the native FAD-dependent glycerol catabolic pathway with the NAD-dependent 'DHA pathway'. In addition, a heterologous aquaglyceroporin (Fps1 homolog) was expressed to facilitate glycerol uptake. The current study was launched to scrutinize the formation of S. cerevisiae's natural fermentation product ethanol from glycerol caused by the conducted genetic modifications. This understanding is supposed to facilitate future engineering of this yeast for fermenting glycerol into valuable products more reduced than ethanol. RESULTS A strain solely exhibiting the glycerol catabolic pathway replacement produced ethanol at concentrations close to the detection limit. The expression of the heterologous aquaglyceroporin caused significant ethanol production (8.5 g L-1 from 51.5 g L-1 glycerol consumed) in a strain catabolizing glycerol via the DHA pathway but not in the wild-type background. A reduction of oxygen availability in the shake flask cultures further increased the ethanol titer up to 15.7 g L-1 (from 45 g L-1 glycerol consumed). CONCLUSION The increased yield of cytosolic NADH caused by the glycerol catabolic pathway replacement seems to be a minimal requirement for the occurrence of alcoholic fermentation in S. cerevisiae growing in synthetic glycerol medium. The remarkable metabolic switch to ethanol formation in the DHA pathway strain with the heterologous aquaglyceroporin supports the assumption of a much stronger influx of glycerol accompanied by an increased rate of cytosolic NADH production via the DHA pathway. The fact that a reduction of oxygen supply increases ethanol production in DHA pathway strains is in line with the hypothesis that a major part of glycerol in normal shake flask cultures still enters the catabolism in a respiratory manner.
Collapse
Affiliation(s)
- Maximilian R. Aßkamp
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
47
|
The Use of CRISPR-Cas9 Genome Editing to Determine the Importance of Glycerol Uptake in Wine Yeast During Icewine Fermentation. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high concentration of sugars in Icewine juice causes formidable stress for the fermenting Saccharomyces cerevisiae, causing cells to lose water and shrink in size. Yeast can combat this stress by increasing the internal concentration of glycerol by activating the high osmolarity glycerol response to synthesize glycerol and by actively transporting glycerol into the cell from the environment. The H+/glycerol symporter, Stl1p, has been previously characterized as being glucose repressed and inactivated, despite osmotic stress induction. To further investigate the role of Stl1p in Icewine fermentations, we developed a rapid single plasmid CRISPR-Cas9-based genome editing method to construct a strain of the common Icewine yeast, S. cerevisiae K1-V1116, that lacks STL1. In an Icewine fermentation, the ∆STL1 strain had reduced fermentation performance, and elevated glycerol and acetic acid production compared to the parent. These results demonstrate that glycerol uptake by Stl1p has a significant role during osmotically challenging Icewine fermentations in K1-V1116 despite potential glucose downregulation.
Collapse
|
48
|
Monti L, Pelizzola V, Povolo M, Fontana S, Contarini G. Study on the sugar content of blue-veined “Gorgonzola” PDO cheese. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Kawai K, Kanesaki Y, Yoshikawa H, Hirasawa T. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. J Biosci Bioeng 2019; 128:162-169. [DOI: 10.1016/j.jbiosc.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
|
50
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|