1
|
Takado M, Yamamoto TG, Chikashige Y, Matsumoto T. Fission yeast Wee1 is required for stable kinetochore-microtubule attachment. Open Biol 2024; 14:230379. [PMID: 38166399 PMCID: PMC10762435 DOI: 10.1098/rsob.230379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors.
Collapse
Affiliation(s)
- Masahiro Takado
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takaharu G. Yamamoto
- Kobe Frontier Research Center, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yuji Chikashige
- Kobe Frontier Research Center, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tomohiro Matsumoto
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Jian Y, Nie L, Liu S, Jiang Y, Dou Z, Liu X, Yao X, Fu C. The fission yeast kinetochore complex Mhf1-Mhf2 regulates the spindle assembly checkpoint and faithful chromosome segregation. J Cell Sci 2023; 136:286678. [PMID: 36537249 DOI: 10.1242/jcs.260124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Sikai Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| |
Collapse
|
3
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Dilshara MG, Jayasooriya RGPT, Karunarathne WAHM, Choi YH, Kim GY. Camptothecin induces mitotic arrest through Mad2-Cdc20 complex by activating the JNK-mediated Sp1 pathway. Food Chem Toxicol 2019; 127:143-155. [PMID: 30885713 DOI: 10.1016/j.fct.2019.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Camptothecin (CPT) is a popular therapeutic agent that targets topoisomerase I. Our findings demonstrated that CPT-induced microtubule polymerization results in markedly increased histone H3 phosphorylation. CPT also enhanced interactions between the mitotic checkpoint proteins, Mad2 and Cdc20, and thereby increased mitotic arrest. Transient knockdown of Mad2 completely restored cell cycle progression from CPT-induced mitotic arrest, while simultaneously reduced cyclin B1 and Cdk1 expression. Moreover, we found that c-Jun N-terminal kinase (JNK) acts upstream of Sp1, which upregulates p21-mediated mitotic arrest in response to CPT; furthermore, knockdown of p21 restored cell cycle progression, while inhibition of Cdks completely restored cell cycle progression from CPT-induced mitotic arrest. We hypothesized that, during mitotic arrest in response to CPT, cell survival signaling blocks apoptosis, thereby enhancing mitotic arrest. As expected, a caspase-9 inhibitor, z-LEHD-FMK, and an autophagy inhibitor, 3-methyladenine (3 MA), significantly diminished CPT-induced mitotic arrest. On the other hand, when Mad2 was depleted, z-LEHD-FMK and 3 MA markedly increased apoptosis, and restored cell cycle progression. Taken together, these results suggest that CPT decodes the action of topoisomerase I-mediated tubulin targeting drugs, leading to mitotic arrest by upregulating Mad2 through the JNK-mediated Sp1 pathway and autophagy formation from tubulin polymerization.
Collapse
Affiliation(s)
| | | | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
6
|
Inositol Pyrophosphate Kinase Asp1 Modulates Chromosome Segregation Fidelity and Spindle Function in Schizosaccharomyces pombe. Mol Cell Biol 2016; 36:3128-3140. [PMID: 27697865 DOI: 10.1128/mcb.00330-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Chromosome transmission fidelity during mitosis is of critical importance for the fitness of an organism, as mistakes will lead to aneuploidy, which has a causative role in numerous severe diseases. Proper segregation of chromosomes depends on interdependent processes at the microtubule-kinetochore interface and the spindle assembly checkpoint. Here we report the discovery of a new element essential for chromosome transmission fidelity that implicates inositol pyrophosphates (IPPs) as playing a key role in this process. The protein is Asp1, the Schizosaccharomyces pombe member of the highly conserved Vip1 family. Vip1 enzymes are bifunctional: they consist of an IPP-generating kinase domain and a pyrophosphatase domain that uses such IPPs as substrates. We show that Asp1 kinase function is required for bipolar spindle formation. The absence of Asp1-generated IPPs resulted in errors in sister chromatid biorientation, a prolonged checkpoint-controlled delay of anaphase onset, and chromosome missegregation. Remarkably, expression of Asp1 variants that generated higher-than-wild-type levels of IPPs led to a faster-than-wild-type entry into anaphase A without an increase in chromosome missegregation. In fact, the chromosome transmission fidelity of a nonessential chromosome was enhanced with increased cellular IPPs. Thus, we identified an element that optimized the wild-type chromosome transmission process.
Collapse
|
7
|
Cleavage and polyadenylation factor, Rna14 is an essential protein required for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:189-97. [DOI: 10.1016/j.bbamcr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 11/24/2022]
|
8
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
9
|
Xu X, Nakazawa N, Yanagida M. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast. PLoS One 2015; 10:e0119347. [PMID: 25764183 PMCID: PMC4357468 DOI: 10.1371/journal.pone.0119347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.
Collapse
Affiliation(s)
- Xingya Xu
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norihiko Nakazawa
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- * E-mail:
| |
Collapse
|
10
|
The kinetochore protein Kis1/Eic1/Mis19 ensures the integrity of mitotic spindles through maintenance of kinetochore factors Mis6/CENP-I and CENP-A. PLoS One 2014; 9:e111905. [PMID: 25375240 PMCID: PMC4222959 DOI: 10.1371/journal.pone.0111905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity.
Collapse
|
11
|
Sun W, Dong WW, Mao LL, Li WM, Cui JT, Xing R, Lu YY. Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma. World J Gastroenterol 2013; 19:2913-20. [PMID: 23704824 PMCID: PMC3660816 DOI: 10.3748/wjg.v19.i19.2913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the association of p42.3 expression with clinicopathological characteristics and the biological function of p42.3 in human hepatocellular carcinoma (HCC).
METHODS: We used reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR and western blotting to detect p42.3 mRNA and protein expression in hepatic cell lines. We examined primary HCC samples and matched adjacent normal tissue by immunohistochemistry to investigate the correlation between p42.3 expression and clinicopathological features. HepG2 cells were transfected with a pIRES2-EGFP-p42.3 expression vector to examine the function of the p42.3 gene. Transfected cells were analyzed for their viability and malignant transformation abilities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and tumorigenicity assay in nude mice.
RESULTS: p42.3 is differentially expressed in primary HCC tumors and cell lines. Approximately 69.6% (96/138) of cells were p42.3-positive in hepatic tumor tissues, while 30.7% (35/114) were p42.3-positive in tumor-adjacent normal tissues. Clinicopathological characteristics of the HCC specimens revealed a significant correlation between p42.3 expression and tumor differentiation (P = 0.031). However, p42.3 positivity was not related to tumor tumor-node-metastasis classification, hepatitis B virus status, or hepatoma type. Regarding p42.3 overexpression in stably transfected HepG2 cells, we discovered significant enhancement of cancer cell growth and colony formation in vitro, and significantly enhanced tumorigenicity in nude mice. Western blot analysis of cell cycle proteins revealed that enhanced p42.3 levels promote upregulation of proliferating cell nuclear antigen, cyclin B1 and mitotic arrest deficient 2.
CONCLUSION: p42.3 promotes tumorigenicity and tumor growth in HCC and may be a potential target for future clinical cancer therapeutics.
Collapse
|
12
|
Roy B, Varshney N, Yadav V, Sanyal K. The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 2012; 338:107-17. [PMID: 23039831 DOI: 10.1111/1574-6968.12019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
High fidelity chromosome segregation is essential for efficient transfer of the genetic material from the mother to daughter cells. The kinetochore (KT), which connects the centromere DNA to the spindle apparatus, plays a pivotal role in this process. In spite of considerable divergence in the centromere DNA sequence, basic architecture of a KT is evolutionarily conserved from yeast to humans. However, the identification of a large number of KT proteins paved the way of understanding conserved and diverged regulatory steps that lead to the formation of a multiprotein KT super-complex on the centromere DNA in different organisms. Because it is a daunting task to summarize the entire spectrum of information in a minireview, we focus here on the recent understanding in the process of KT assembly in three yeasts: Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans. Studies in these unicellular organisms suggest that although the basic process of KT assembly remains the same, the dependence of a conserved protein for its KT localization may vary in these organisms.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
13
|
Sos7, an essential component of the conserved Schizosaccharomyces pombe Ndc80-MIND-Spc7 complex, identifies a new family of fungal kinetochore proteins. Mol Cell Biol 2012; 32:3308-20. [PMID: 22711988 DOI: 10.1128/mcb.00212-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chromosome segregation is powered by the kinetochore, a large macromolecular structure assembled on centromeric chromatin. Attachment of sister chromatids to microtubules is mediated by the highly conserved tripartite KMN (acronym for KNL-1-Mis12-Ndc80) kinetochore network. In the fission yeast Schizosaccharomyces pombe, the equivalent complex is called NMS (Ndc80-MIND-Spc7). Here, we show that not all components of the NMS complex had been identified previously. A 10th NMS component exists, the essential Sos7 protein, which is a genetic and physical interaction partner of Spc7. The analysis of sos7 kinetochore-null mutant yeast strains demonstrated that Sos7 is central to NMS function. In particular, Sos7 is required for kinetochore targeting of Spc7 as well as components of the MIND complex. sos7 mutant strains show severe chromosome missegregation phenotypes and have compromised microtubule-kinetochore interactions. Sos7 is the founding member of a functionally conserved fungal kinetochore family not present in the point centromere carrying Saccharomycotina clusters, suggesting that the new Sos7 family might be a signature motif of fungi with regional centromeres.
Collapse
|
14
|
Perpelescu M, Fukagawa T. The ABCs of CENPs. Chromosoma 2011; 120:425-46. [PMID: 21751032 DOI: 10.1007/s00412-011-0330-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
Equal distribution of DNA in mitosis requires the assembly of a large proteinaceous ensemble onto the centromeric DNA, called the kinetochore. With few exceptions, kinetochore specification is independent of the DNA sequence and is determined epigenetically by deposition at the centromeric chromatin of special nucleosomes containing an H3-related histone, CENP-A. Onto centromeric CENP-A chromatin is assembled the so-called constitutive centromere-associated network (CCAN) of 16 proteins distributed in several functional groups as follows: CENP-C, CENP-H/CENP-I/CENP-K/, CENP-L/CENP-M/CENP-N, CENP-O/CENP-P/CENP-Q/CENP-R/CENP-U(50), CENP-T/CENP-W, and CENP-S/CENP-X. One role of the CCAN is to recruit outer kinetochore components further, such as KNL1, the Mis12 complex, and the Ndc80 complex (KMN network) to which attach the spindle microtubules with their structural and regulatory proteins. Among the CENPs in CCAN, CENP-C and CENP-T are required in parallel for operational kinetochore specification and spindle attachment. This review presents discussion of the latest structural and functional data on CENP-A and CENPs from the CCAN as well as their interaction with the KMN network.
Collapse
Affiliation(s)
- Marinela Perpelescu
- Department of Molecular Genetics, National Institute of Genetics and the Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | | |
Collapse
|
15
|
CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol Cell Biol 2010; 30:2090-104. [PMID: 20160010 DOI: 10.1128/mcb.01318-09] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible growth arrest and is presumed to be a natural barrier to tumor development. Like telomere shortening, certain defects in chromosome integrity can trigger senescence; however, the roles of centromere proteins in regulating commitment to the senescent state remains to be established. We examined chromatin structure in senescent human primary fibroblasts and found that CENP-A protein levels are diminished in senescent cells. Senescence-associated reduction of CENP-A is caused by transcriptional and posttranslational control. Surprisingly, forced reduction of CENP-A by short-hairpin RNA was found to cause premature senescence in human primary fibroblasts. This premature senescence is dependent on a tumor suppressor, p53, but not on p16(INK4a)-Rb; the depletion of CENP-A in p53-deficient cells results in aberrant mitosis with chromosome missegregation. We propose that p53-dependent senescence that arises from CENP-A reduction acts as a "self-defense mechanism" to prevent centromere-defective cells from undergoing mitotic proliferation that potentially leads to massive generation of aneuploid cells.
Collapse
|
16
|
Abstract
Kinetochores are large protein assemblies built on chromosomal loci named centromeres. The main functions of kinetochores can be grouped under four modules. The first module, in the inner kinetochore, contributes a sturdy interface with centromeric chromatin. The second module, the outer kinetochore, contributes a microtubule-binding interface. The third module, the spindle assembly checkpoint, is a feedback control mechanism that monitors the state of kinetochore-microtubule attachment to control the progression of the cell cycle. The fourth module discerns correct from improper attachments, preventing the stabilization of the latter and allowing the selective stabilization of the former. In this review, we discuss how the molecular organization of the four modules allows a dynamic integration of kinetochore-microtubule attachment with the prevention of chromosome segregation errors and cell-cycle progression.
Collapse
Affiliation(s)
- Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Research Unit of the Italian Institute of Technology at the IFOM-IEO Campus, Milan, Italy
| |
Collapse
|
17
|
Milks KJ, Moree B, Straight AF. Dissection of CENP-C-directed centromere and kinetochore assembly. Mol Biol Cell 2009; 20:4246-55. [PMID: 19641019 DOI: 10.1091/mbc.e09-05-0378] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells ensure accurate chromosome segregation in mitosis by assembling a microtubule-binding site on each chromosome called the kinetochore that attaches to the mitotic spindle. The kinetochore is assembled specifically during mitosis on a specialized region of each chromosome called the centromere, which is constitutively bound by >15 centromere-specific proteins. These proteins, including centromere proteins A and C (CENP-A and -C), are essential for kinetochore assembly and proper chromosome segregation. How the centromere is assembled and how the centromere promotes mitotic kinetochore formation are poorly understood. We have used Xenopus egg extracts as an in vitro system to study the role of CENP-C in centromere and kinetochore assembly. We show that, unlike the histone variant CENP-A, CENP-C is not maintained at centromeres through spermatogenesis but is assembled at the sperm centromere from the egg cytoplasm. Immunodepletion of CENP-C from metaphase egg extract prevents kinetochore formation on sperm chromatin, and depleted extracts can be complemented with in vitro-translated CENP-C. Using this complementation assay, we have identified CENP-C mutants that localized to centromeres but failed to support kinetochore assembly. We find that the amino terminus of CENP-C promotes kinetochore assembly by ensuring proper targeting of the Mis12/MIND complex and CENP-K.
Collapse
Affiliation(s)
- Kirstin J Milks
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
18
|
Tomita K, Cooper JP. Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 2009; 22:3461-74. [PMID: 19141478 DOI: 10.1101/gad.498608] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Telomeres recruit telomerase and differentiate chromosome ends from sites of DNA damage. Although the DNA damage checkpoint PI3-kinases ATM and ATR localize to telomeres and promote telomerase activation, activation of their downstream checkpoint pathway targets is inhibited. Here, we show that the fission yeast telomeric protein Ccq1 is required for telomerase recruitment and inhibition of ATR target activation at telomeres. The loss of Ccq1 results in progressive telomere shortening and persistent ATR-dependent activation of Chk1. Unlike the checkpoint activation that follows loss of telomerase, this checkpoint activation occurs prior to detectable levels of critically short telomeres. When ccq1Delta telomeres do become critically short, activated Chk1 promotes an unusual homologous recombination-based telomere maintenance process. We find that the previously reported meiotic segregation defects of cells lacking Ccq1 stem from its role in telomere maintenance rather than from a role in formation of the meiotic bouquet. These findings demonstrate the existence of a novel telomerase recruitment factor that also serves to suppress local checkpoint activation.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
19
|
Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 2008; 321:1088-91. [PMID: 18719285 DOI: 10.1126/science.1158699] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The centromere is essential for the inheritance of genetic information on eukaryotic chromosomes. Epigenetic regulation of centromere identity has been implicated in genome stability, karyotype evolution, and speciation. However, little is known regarding the manner in which centromere dysfunction affects the chromosomal architectures. Here we show that in the fission yeast Schizosaccharomyces pombe, the conditional deletion of the centromere produces survivors that carry either a neocentromere-acquired chromosome at the subtelomeric region or an acentric chromosome rescued by intertelomere fusion with either of the remaining chromosomes. The ratio of neocentromere formation to telomere fusion is considerably decreased by the inactivation of genes involved in RNA interference-dependent heterochromatin formation. By affecting the modes of chromosomal reorganization, the genomic distribution of heterochromatin may influence the fate of karyotype evolution.
Collapse
Affiliation(s)
- Kojiro Ishii
- Division of Cell Biology, Institute of Life Science, Kurume University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saitoh S, Kobayashi Y, Ogiyama Y, Takahashi K. Dual regulation of Mad2 localization on kinetochores by Bub1 and Dam1/DASH that ensure proper spindle interaction. Mol Biol Cell 2008; 19:3885-97. [PMID: 18632983 DOI: 10.1091/mbc.e08-03-0298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The spindle assembly checkpoint monitors the state of spindle-kinetochore interaction to prevent premature onset of anaphase. Although checkpoint proteins, such as Mad2, are localized on kinetochores that do not interact properly with the spindle, it remains unknown how the checkpoint proteins recognize abnormalities in spindle-kinetochore interaction. Here, we report that Mad2 localization on kinetochores in fission yeast is regulated by two partially overlapping but distinct pathways: the Dam1/DASH and the Bub1 pathways. We show that Mad2 is localized on "unattached" as well as "tensionless" kinetochores. Our observations suggest that Bub1 is required for Mad2 to detect tensionless kinetochores, whereas Dam1/DASH is crucial for Mad2 to detect unattached kinetochores. In cells lacking both Bub1 and Dam1/DASH, Mad2 localization on kinetochores is diminished, and mitotic progression appears to be accelerated despite the frequent occurrence of abnormal chromosome segregation. Furthermore, we found that Dam1/DASH is required for promotion of spindle association with unattached kinetochores. In contrast, there is accumulating evidence that Bub1 is involved in resolution of erroneous spindle attachment on tensionless kinetochores. These pathways may act as molecular sensors determining the state of spindle association on each kinetochore, enabling proper regulation of the checkpoint activation as well as promotion/resolution of spindle attachment.
Collapse
Affiliation(s)
- Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | |
Collapse
|
21
|
Tange Y, Niwa O. Schizosaccharomyces pombe Bub3 is dispensable for mitotic arrest following perturbed spindle formation. Genetics 2008; 179:785-92. [PMID: 18505884 PMCID: PMC2429874 DOI: 10.1534/genetics.107.081695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
22
|
Takayama Y, Sato H, Saitoh S, Ogiyama Y, Masuda F, Takahashi K. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol Biol Cell 2008; 19:682-90. [PMID: 18077559 PMCID: PMC2230595 DOI: 10.1091/mbc.e07-05-0504] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 11/12/2007] [Accepted: 11/27/2007] [Indexed: 11/11/2022] Open
Abstract
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Delta ams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Delta ams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Delta ams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Hiroshi Sato
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Yuki Ogiyama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Fumie Masuda
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Kohta Takahashi
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| |
Collapse
|
23
|
The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 2007; 26:5033-47. [PMID: 18007590 DOI: 10.1038/sj.emboj.7601927] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/24/2007] [Indexed: 12/20/2022] Open
Abstract
Kinetochores are complex protein machines that link chromosomes to spindle microtubules and contain a structural core composed of two conserved protein-protein interaction networks: the well-characterized KMN (KNL1/MIND/NDC80) and the recently identified CENP-A NAC/CAD. Here we show that the CENP-A NAC/CAD subunits can be assigned to one of two different functional classes; depletion of Class I proteins (Mcm21R(CENP-O) and Fta1R(CENP-L)) causes a failure in bipolar spindle assembly. In contrast, depletion of Class II proteins (CENP-H, Chl4R(CENP-N), CENP-I and Sim4R(CENP-K)) prevents binding of Class I proteins and causes chromosome congression defects, but does not perturb spindle formation. Co-depletion of Class I and Class II proteins restores spindle bipolarity, suggesting that Class I proteins regulate or counteract the function of Class II proteins. We also demonstrate that CENP-A NAC/CAD and KMN regulate kinetochore-microtubule attachments independently, even though CENP-A NAC/CAD can modulate NDC80 levels at kinetochores. Based on our results, we propose that the cooperative action of CENP-A NAC/CAD subunits and the KMN network drives efficient chromosome segregation and bipolar spindle assembly during mitosis.
Collapse
|
24
|
Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe. Genetics 2007; 177:1487-97. [PMID: 17947424 DOI: 10.1534/genetics.107.078691] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.
Collapse
|
25
|
Kobayashi Y, Saitoh S, Ogiyama Y, Soejima S, Takahashi K. The fission yeast DASH complex is essential for satisfying the spindle assembly checkpoint induced by defects in the inner-kinetochore proteins. Genes Cells 2007; 12:311-28. [PMID: 17352737 DOI: 10.1111/j.1365-2443.2007.01053.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spindle assembly checkpoint (SAC) is an evolutionarily conserved surveillance system for chromosome missegregation. We isolated fission yeast Hos2, a component of the Dam1/DASH complex, as a multicopy suppressor of temperature-sensitive (ts) growth of nnf1-495 mutant that exhibits the minichromosome instability (mis) phenotype, producing lethal aneuploids without prominent mitotic delay. It remains elusive why SAC is satisfied in mis mutants despite the occurrence of missegregation. We found that Hos2 binds to the inner-kinetochore regions in both prometaphase and metaphase. Hos2 is essential for kinetochore localization of Dis1, a microtubule (MT) associated Dis1/XMAP215/TOG family protein that is required for proper MT dynamics. Cells lacking DASH exhibit cold-sensitive (cs) growth with the defective in sister-chromatid disjoining (dis) phenotype, which is characterized by hyper-condensed sister-chromatid pairs and elongated spindle MTs. Although DASH-deficient cells are viable at high temperatures, DASH-deletion transforms all the inner-kinetochore mis mutants so far tested into a constitutively active state of SAC, leading to the dis phenotype. We also discovered that Hos2 over-expression commonly suppresses growth retardation in a variety of inner-kinetochore mutants. These genetic interactions highlight the DASH-action(s) in satisfying SAC when aneuploids are formed during mitosis in the inner-kinetochore-defective mis mutants.
Collapse
Affiliation(s)
- Yasuyo Kobayashi
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka, 839-0864, Japan
| | | | | | | | | |
Collapse
|
26
|
Kerres A, Jakopec V, Fleig U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell 2007; 18:2441-54. [PMID: 17442892 PMCID: PMC1924829 DOI: 10.1091/mbc.e06-08-0738] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spc7, a member of the conserved Spc105/KNL-1 family of kinetochore proteins, was identified as an interaction partner of the EB1 homologue Mal3. Spc7 associates with the central centromere region of the chromosome but does not affect transcriptional silencing. Here, we show that Spc7 is required for the integrity of the spindle as well as for targeting of MIND but not of Ndc80 complex components to the kinetochore. Spindle defects in spc7 mutants were severe ranging from the inability to form a bipolar spindle in early mitosis to broken spindles in midanaphase B. spc7 mutant phenotypes were partially rescued by extra alpha-tubulin or extra Mal2. Thus, Spc7 interacts genetically with the Mal2-containing Sim4 complex.
Collapse
Affiliation(s)
- Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Grishchuk EL, Spiridonov IS, McIntosh JR. Mitotic chromosome biorientation in fission yeast is enhanced by dynein and a minus-end-directed, kinesin-like protein. Mol Biol Cell 2007; 18:2216-25. [PMID: 17409356 PMCID: PMC1877089 DOI: 10.1091/mbc.e06-11-0987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end-directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Molecular, Cellular, and Developmental Biology Department, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
28
|
Tange Y, Niwa O. Novel mad2 alleles isolated in a Schizosaccharomyces pombe gamma-tubulin mutant are defective in metaphase arrest activity, but remain functional for chromosome stability in unperturbed mitosis. Genetics 2007; 175:1571-84. [PMID: 17277378 PMCID: PMC1855100 DOI: 10.1534/genetics.106.061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
29
|
Hayashi A, Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:5173-84. [PMID: 17035632 PMCID: PMC1679682 DOI: 10.1091/mbc.e06-05-0388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the transition from mitosis to meiosis, the kinetochore undergoes significant reorganization, switching from a bipolar to a monopolar orientation. To examine the centromere proteins that are involved in fundamental reorganization in meiosis, we observed the localization of 22 mitotic and 2 meiotic protein components of the kinetochore during meiosis in living cells of the fission yeast. We found that the 22 mitotic proteins can be classified into three groups: the Mis6-like group, the NMS (Ndc80-Mis12-Spc7) group, and the DASH group, based on their meiotic behavior. Mis6-like group proteins remain at the centromere throughout meiosis. NMS group proteins disappear from the centromere at the onset of meiosis and reappear at the centromere in two steps in late prophase. DASH group proteins appear shortly before metaphase of meiosis I. These observations suggest that Mis6-like group proteins constitute the structural basis of the centromere and that the NMS and DASH group proteins reassemble to establish the functional metaphase kinetochore. On the other hand, the meiosis-specific protein Moa1, which plays an important role in forming the meiotic monopolar kinetochore, is loaded onto the centromere significantly earlier than the NMS group, whereas another meiosis-specific protein, Sgo1, is loaded at times similar to the NMS group.
Collapse
Affiliation(s)
- Aki Hayashi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Haruhiko Asakawa
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Tokuko Haraguchi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yasushi Hiraoka
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| |
Collapse
|
30
|
Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci U S A 2006; 103:14877-82. [PMID: 17001001 PMCID: PMC1595444 DOI: 10.1073/pnas.0606958103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the pathogenic yeast Candida albicans, the 3-kb centromeric DNA regions (CEN) of each of the eight chromosomes have different and unique DNA sequences. The centromeric histone CaCse4p (CENP-A homolog) occurs only within these 3-kb CEN regions to form specialized centromeric chromatin. Centromere activity was maintained on small chromosome fragments derived in vivo by homologous recombination of a native chromosome with linear DNA fragments containing a telomere and a selectable marker. An in vivo derived 85-kb truncated chromosome containing the 3-kb CEN7 locus on 69 kb of chromosome 7 DNA was stably and autonomously maintained in mitosis, indicating that preexisting active CEN chromatin remains functional through many generations. This same 85-kb chromosome fragment, isolated as naked DNA (devoid of chromatin proteins) from C. albicans and reintroduced back into C. albicans cells by standard DNA transformation techniques, was unable to reform functional CEN chromatin and was mitotically unstable. Comparison of active and inactive CEN chromatin digested with micrococcal nuclease revealed that periodic nucleosome arrays are disrupted at active centromeres. Chromatin immunoprecipitation with antibodies against CaCse4p confirmed that CEN7 introduced into C. albicans cells as naked DNA did not recruit CaCse4p or induce its spread to a duplicate region only 7 kb away from active CEN7 chromatin. These results indicate that CaCse4p recruitment and centromere activation are epigenetically specified and maintained in C. albicans.
Collapse
Affiliation(s)
- Mary Baum
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610
| | - Kaustuv Sanyal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610
| | - Prashant K. Mishra
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610
| | - Nathaniel Thaler
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610
| | - John Carbon
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Kerres A, Jakopec V, Beuter C, Karig I, Pöhlmann J, Pidoux A, Allshire R, Fleig U. Fta2, an essential fission yeast kinetochore component, interacts closely with the conserved Mal2 protein. Mol Biol Cell 2006; 17:4167-78. [PMID: 16855021 PMCID: PMC1635372 DOI: 10.1091/mbc.e06-04-0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fission yeast multiprotein-component Sim4 complex plays a fundamental role in the assembly of a functional kinetochore. It affects centromere association of the histone H3 variant CENP-A as well as kinetochore association of the DASH complex. Here, multicopy suppressor analysis of a mutant version of the Sim4 complex component Mal2 identified the essential Fta2 kinetochore protein, which is required for bipolar chromosome attachment. Kinetochore localization of Mal2 and Fta2 depends on each other, and overexpression of one protein can rescue the phenotype of the mutant version of the other protein. fta2 mal2 double mutants were inviable, implying that the two proteins have an overlapping function. This close interaction with Fta2 is not shared by other Sim4 complex components, indicating the existence of functional subgroups within this complex. The Sim4 complex seems to be assembled in a hierarchical way, because Fta2 is localized correctly in a sim4 mutant. However, Fta2 kinetochore localization is reduced in a spc7 mutant. Spc7, a suppressor of the EB1 family member Mal3, is part of the conserved Ndc80-MIND-Spc7 kinetochore complex.
Collapse
Affiliation(s)
- Anne Kerres
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| | - Visnja Jakopec
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| | - Christoph Beuter
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| | - Inga Karig
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| | - Jennifer Pöhlmann
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| | - Alison Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Ursula Fleig
- *Lehrstuhl für funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany; and
| |
Collapse
|