1
|
DeWitt JT, Raghunathan M, Haricharan S. Nonrepair functions of DNA mismatch repair proteins: new avenues for precision oncology. Trends Cancer 2025; 11:49-61. [PMID: 39490324 PMCID: PMC12077842 DOI: 10.1016/j.trecan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
DNA damage repair (DDR) proteins are well recognized as guardians of the genome that are frequently lost during malignant transformation of normal cells across cancer types. To date, their tumor suppressor functions have been generally regarded as a consequence of their roles in maintaining genomic stability: more genomic instability increases the risk of oncogenic transformation events. However, recent discoveries centering around DNA mismatch repair (MMR) proteins suggest a broader impact of the loss of DDR proteins on cellular processes beyond genomic instability. Here, we explore the clinical implications of nonrepair roles for DDR proteins, using the growing evidence supporting roles for DNA MMR proteins in cell cycle and apoptosis regulation, metabolic function, the cellular secretome, and immunomodulation.
Collapse
Affiliation(s)
- Jerry Tyler DeWitt
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svasti Haricharan
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
2
|
Prados-Carvajal R, Rodriguez-Real G, Gutierrez-Pozo G, Huertas P. CtIP -mediated alternative mRNA splicing finetunes the DNA damage response. RNA (NEW YORK, N.Y.) 2020; 27:rna.078519.120. [PMID: 33298529 PMCID: PMC7901839 DOI: 10.1261/rna.078519.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In order to survive to the exposure of DNA damaging agents, cells activate a complex response that coordinates the cellular metabolism, cell cycle progression and DNA repair. Among many other events, recent evidence has described global changes in mRNA splicing in cells treated with genotoxic agents. Here, we explore further this DNA damage-dependent alternative splicing. Indeed, we show that both the splicing factor SF3B2 and the repair protein CtIP contribute to the global pattern of splicing both in cells treated or not to DNA damaging agents. Additionally, we focus on a specific DNA damage- and CtIP-dependent alternative splicing event of the helicase PIF1 and explore its relevance for the survival of cells upon exposure to ionizing radiation. Indeed, we described how the nuclear, active form of PIF1 is substituted by a splicing variant, named vPIF1, in a fashion that requires both the presence of DNA damage and CtIP. Interestingly, timely expression of vPIF1 is required for optimal survival to exposure to DNA damaging agents, but early expression of this isoform delays early events of the DNA damage response. On the contrary, expression of the full length PIF1 facilitates those early events, but increases the sensitivity to DNA damaging agents if the expression is maintained long-term.
Collapse
|
3
|
Li K, Peng S, Li Z, Lai Y, Wang Q, Tao Y, Wu W, Zhou Q, Gao Z, Chen J, Li H, Cai W, Guo Z, Huang H. Topoisomerase II-binding protein 1 promotes the progression of prostate cancer via ATR-CHK1 signaling pathway. Aging (Albany NY) 2020; 12:9948-9958. [PMID: 32459662 PMCID: PMC7288942 DOI: 10.18632/aging.103260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
DNA damage response (DDR) plays an important role in the progression of cancers, including prostate cancer (PCa). Topoisomerase II-binding protein 1 (TopBP1) is an essential promotor of ATR-mediated DDR. Herein, we investigated the association between TopBP1 and PCa and determined its effect on the progression of PCa. The expression and clinical features of TopBP1 were analyzed using large-scale cohort of tissue microarray analyses and The Cancer Genome Atlas database, which indicated that TopBP1 was positively correlated with high Gleason Score, advanced clinical and pathological stages, the metastasis status. Multivariate analysis revealed that the upregulation of TopBP1 was an independent predictor for a worse biochemical recurrence-free survival (BCR-free survival). Furthermore, we discovered that downregulation of TopBP1 significantly suppressed the growth and migration ability of PCa lines by loss-of-function assays in vitro. Further mechanistic investigations clarified that TopBP1 promoted proliferation and migration by activating ATR-Chk1 signaling pathway.
Collapse
Affiliation(s)
- Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zean Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiran Tao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanhua Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ze Gao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhenghui Guo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Kim SM, Tripathi VP, Shen KF, Forsburg SL. Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3 (BETHESDA, MD.) 2020; 10:255-266. [PMID: 31719112 PMCID: PMC6945033 DOI: 10.1534/g3.119.400726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
From yeast to humans, the cell cycle is tightly controlled by regulatory networks that regulate cell proliferation and can be monitored by dynamic visual markers in living cells. We have observed S phase progression by monitoring nuclear accumulation of the FHA-containing DNA binding protein Tos4, which is expressed in the G1/S phase transition. We use Tos4 localization to distinguish three classes of DNA replication mutants: those that arrest with an apparent 1C DNA content and accumulate Tos4 at the restrictive temperature; those that arrest with an apparent 2C DNA content, that do not accumulate Tos4; and those that proceed into mitosis despite a 1C DNA content, again without Tos4 accumulation. Our data indicate that Tos4 localization in these conditions is responsive to checkpoint kinases, with activation of the Cds1 checkpoint kinase promoting Tos4 retention in the nucleus, and activation of the Chk1 damage checkpoint promoting its turnover. Tos4 localization therefore allows us to monitor checkpoint-dependent activation that responds to replication failure in early vs. late S phase.
Collapse
Affiliation(s)
- Seong M Kim
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Vishnu P Tripathi
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| |
Collapse
|
5
|
Gómez-Escoda B, Wu PYJ. The organization of genome duplication is a critical determinant of the landscape of genome maintenance. Genome Res 2018; 28:1179-1192. [PMID: 29934426 PMCID: PMC6071636 DOI: 10.1101/gr.224527.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Genome duplication is essential for cell proliferation, and the mechanisms regulating its execution are highly conserved. These processes give rise to a spatiotemporal organization of replication initiation across the genome, referred to as the replication program. Despite the identification of such programs in diverse eukaryotic organisms, their biological importance for cellular physiology remains largely unexplored. We address this fundamental question in the context of genome maintenance, taking advantage of the inappropriate origin firing that occurs when fission yeast cells lacking the Rad3/ATR checkpoint kinase are subjected to replication stress. Using this model, we demonstrate that the replication program quantitatively dictates the extent of origin de-regulation and the clustered localization of these events. Furthermore, our results uncover an accumulation of abnormal levels of single-stranded DNA (ssDNA) and the Rad52 repair protein at de-regulated origins. We show that these loci constitute a defining source of the overall ssDNA and Rad52 hotspots in the genome, generating a signature pattern of instability along the chromosomes. We then induce a genome-wide reprogramming of origin usage and evaluate its consequences in our experimental system. This leads to a complete redistribution of the sites of both inappropriate initiation and associated Rad52 recruitment. We therefore conclude that the organization of genome duplication governs the checkpoint control of origin-associated hotspots of instability and plays an integral role in shaping the landscape of genome maintenance.
Collapse
Affiliation(s)
- Blanca Gómez-Escoda
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| |
Collapse
|
6
|
Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 2014; 22:165-74. [PMID: 25087188 DOI: 10.1016/j.dnarep.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Human TopBP1 contains nine BRCT domains and functions in DNA replication initiation, checkpoint signalling, DNA repair and influences transcriptional control. TopBP1 and its homologues have been the subject of numerous scientific publications since the last comprehensive review in 2005, emerging as a key scaffold protein that links crucial components within these distinct cellular processes. This review focuses on recently published work, with particular emphasis on structural insights into TopBP1 function and the binding partners identified for DNA replication initiation, DNA-dependent checkpoints, DNA repair and transcription. We further summarise what is known about TopBP1 and links to human disease.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK.
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| |
Collapse
|
7
|
Yan S, Sorrell M, Berman Z. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci 2014; 71:3951-67. [PMID: 24947324 DOI: 10.1007/s00018-014-1666-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023]
Abstract
To maintain genome stability, cells have evolved various DNA repair pathways to deal with oxidative DNA damage. DNA damage response (DDR) pathways, including ATM-Chk2 and ATR-Chk1 checkpoints, are also activated in oxidative stress to coordinate DNA repair, cell cycle progression, transcription, apoptosis, and senescence. Several studies demonstrate that DDR pathways can regulate DNA repair pathways. On the other hand, accumulating evidence suggests that DNA repair pathways may modulate DDR pathway activation as well. In this review, we summarize our current understanding of how various DNA repair and DDR pathways are activated in response to oxidative DNA damage primarily from studies in eukaryotes. In particular, we analyze the functional interplay between DNA repair and DDR pathways in oxidative stress. A better understanding of cellular response to oxidative stress may provide novel avenues of treating human diseases, such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA,
| | | | | |
Collapse
|
8
|
Rad4 mainly functions in Chk1-mediated DNA damage checkpoint pathway as a scaffold protein in the fission yeast Schizosaccharomyces pombe. PLoS One 2014; 9:e92936. [PMID: 24663817 PMCID: PMC3963969 DOI: 10.1371/journal.pone.0092936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 01/29/2023] Open
Abstract
Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD) required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans) yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans), checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation.
Collapse
|
9
|
Yan S, Willis J. WD40-repeat protein WDR18 collaborates with TopBP1 to facilitate DNA damage checkpoint signaling. Biochem Biophys Res Commun 2013; 431:466-71. [PMID: 23333389 DOI: 10.1016/j.bbrc.2012.12.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 01/13/2023]
Abstract
The genomes of all living organisms are exposed to a wide spectrum of insults. To maintain genomic integrity, eukaryotes have evolved an elaborate surveillance mechanism - DNA damage checkpoint signaling - to detect damaged DNA and to arrest cell cycle progression, allowing time to process and repair DNA damage. TopBP1 plays multiple roles in the regulation of DNA damage checkpoint signaling. However, the molecular mechanism of how TopBP1 regulates ATR-mediated Chk1 phosphorylation is poorly understood. In this communication, we demonstrate (1) that the Chk1 activation domain of TopBP1 is critical in response to several different types of DNA damage; (2) that WD40-repeat protein WDR18 associates with the C-terminus of TopBP1 in vitro and in vivo; (3) that the association between WDR18 and TopBP1 is required for AT70-induced Chk1 phosphorylation; (4) and that WDR18 itself is required for AT70-triggered Chk1 phosphorylation. In addition, WDR18 associates with Chk1 in vitro. The data suggest that WDR18 facilitates ATR-dependent Chk1 phosphorylation via interacting with both C-terminus of TopBP1 and Chk1. Our findings indicate that WDR18 is a bona fide checkpoint protein and that WDR18 works together with TopBP1 to promote DNA damage checkpoint signaling.
Collapse
Affiliation(s)
- Shan Yan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
10
|
Bellini A, Girard PM, Lambert S, Tessier L, Sage E, Francesconi S. Stress activated protein kinase pathway modulates homologous recombination in fission yeast. PLoS One 2012; 7:e47987. [PMID: 23118915 PMCID: PMC3485339 DOI: 10.1371/journal.pone.0047987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022] Open
Abstract
Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.
Collapse
|
11
|
The Rad4(TopBP1) ATR-activation domain functions in G1/S phase in a chromatin-dependent manner. PLoS Genet 2012; 8:e1002801. [PMID: 22761595 PMCID: PMC3386226 DOI: 10.1371/journal.pgen.1002801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022] Open
Abstract
DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4TopBP1 AAD–defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is Rad4TopBP1 AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb253BP1. Consistent with a model where Rad4TopBP1 AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4TopBP1 AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4TopBP1 AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3ATR checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–chromatin interactions. DNA structure–dependent checkpoint activation and the amplification of checkpoint signals are carefully modulated to allow the checkpoint kinases to delay mitosis and regulate DNA metabolism. While much work has gone into understanding how this checkpoint functions, the mechanism by which the checkpoint signal is amplified is less clear. We have characterised a conserved domain in the Schizosaccharomyces pombe TopBP1 homolog, Rad4TopBP1 (also known as Cut5) that is capable of activating the ATR homolog Rad3ATR. We demonstrate that this domain is not required for initial checkpoint activation, but functions to amplify the checkpoint signal, likely when the presence of single-stranded DNA is limiting. Our data suggest that the function of the Rad4TopBP1 ATR-Activation Domain (AAD) is mediated by interactions between checkpoint proteins and phosphorylated histone H2A, which is itself promoted by Rad3ATR. We propose that the resulting amplification of the checkpoint signal is particularly important in G1-S phase, when resection is limited.
Collapse
|
12
|
Navadgi-Patil VM, Kumar S, Burgers PM. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. J Biol Chem 2011; 286:40999-1007. [PMID: 21956112 DOI: 10.1074/jbc.m111.283994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.
Collapse
Affiliation(s)
- Vasundhara M Navadgi-Patil
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
13
|
Taylor M, Moore K, Murray J, Aves SJ, Price C. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst) 2011; 10:1154-63. [PMID: 21945095 DOI: 10.1016/j.dnarep.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022]
Abstract
Initiation of DNA replication in eukaryotes is a highly conserved and ordered process involving the co-ordinated, stepwise association of distinct proteins at multiple origins of replication throughout the genome. Here, taking Schizosaccharomyces pombe as a model, the role of Rad4(TopBP1) in the assembly of the replication complex has been examined. Quantitative chromatin immunoprecipitation experiments confirm that Rad4(TopBP1) associates with origins of DNA replication and, in addition, demonstrate that the protein is not present within the active replisome. A direct interaction between Rad4(TopBP1) and Mcm10 is shown and this is reflected in the Rad4(TopBP1)-dependent origin association of Mcm10. Rad4(TopBP1) is also shown to interact with Sld2 and Sld3 and to be required for the stable origin association of these two proteins. Rad4(TopBP1) chromatin association at stalled replication forks was found to be dependent upon the checkpoint protein Rad9, which was not required for Rad4(TopBP1) origin association. Comparison of the levels of chromatin association at origins of replication and stalled replication forks and the differential requirement for Rad9 suggest functional differences for Rad4(TopBP1) at these distinct sites.
Collapse
Affiliation(s)
- Mark Taylor
- School of Health and Medicine, Division of Biomedical and Life Sciences, Biological Sciences Building, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
14
|
Kitano E, Hayashi A, Kanai D, Shinmyozu K, Nakayama JI. Roles of fission yeast Grc3 protein in ribosomal RNA processing and heterochromatic gene silencing. J Biol Chem 2011; 286:15391-402. [PMID: 21385875 PMCID: PMC3083176 DOI: 10.1074/jbc.m110.201343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/01/2011] [Indexed: 01/26/2023] Open
Abstract
Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic regions and that some Grc3 is also present in the nucleolar peripheral region. Depleting the heterochromatic proteins Swi6 or Clr4 abolished heterochromatic localization of Grc3 and resulted in its preferential accumulation in the perinucleolar region, suggesting its dynamic association with these nuclear compartments. Cells expressing mutant grc3 showed defects in 25 S rRNA maturation and in heterochromatic gene silencing. Protein analysis of Grc3-containing complexes led to the identification of Las1 and components of the IPI complex (Rix1, Ipi1, and Crb3). All of these Grc3-interacting proteins showed a dynamic nuclear localization similar to that observed for Grc3, and those conditional mutants showed defects in both rRNA processing and silencing of centromeric transcripts. Our data suggest that Grc3 functions cooperatively with Las1 and the IPI complex in both ribosome biogenesis and heterochromatin assembly.
Collapse
Affiliation(s)
- Erina Kitano
- From the Laboratory for Chromatin Dynamics and
- the Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and
| | - Aki Hayashi
- From the Laboratory for Chromatin Dynamics and
| | - Daigo Kanai
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe Hyogo 650-0047, Japan
| | - Jun-ichi Nakayama
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
15
|
Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase ε. PLoS Genet 2011; 7:e1002022. [PMID: 21436894 PMCID: PMC3060063 DOI: 10.1371/journal.pgen.1002022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/20/2011] [Indexed: 12/23/2022] Open
Abstract
Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.
Collapse
|
16
|
Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol Cell Biol 2008; 28:4782-93. [PMID: 18541674 DOI: 10.1128/mcb.00330-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G(1) phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Delta dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.
Collapse
|
17
|
Siam R, Gómez EB, Forsburg SL. Schizosaccharomyces pombe Rad4/Cut5 protein modification and chromatin binding changes in DNA damage. DNA Cell Biol 2007; 26:565-75. [PMID: 17688408 DOI: 10.1089/dna.2007.0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Schizosaccharomyces pombe Rad4/Cut5 protein is essential for DNA replication and checkpoint control. We have analyzed the behavior of the protein during unperturbed DNA replication, in different replication and checkpoint mutant backgrounds and in response to DNA-damaging agents. In an unperturbed cell cycle, Rad4 is chromatin bound and the mobility of the protein is not altered. Rad4 protein level and thus chromatin binding are dependent on a functional DNA polymerase epsilon. In response to replication arrest and DNA damage, the protein is modified in a Rad3-dependent manner. These data indicate that Rad4 undergoes diverse forms of regulation that are distinct in both DNA replication and checkpoint response.
Collapse
Affiliation(s)
- Rania Siam
- Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, California, USA
| | | | | |
Collapse
|
18
|
Taricani L, Wang TSF. Rad4TopBP1 associates with Srr2, an Spc1 MAPK-regulated protein, in response to environmental stress. J Biol Chem 2007; 282:8793-800. [PMID: 17272281 DOI: 10.1074/jbc.m609282200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad4(TopBP1) is a scaffold in a protein complex containing both replication proteins and checkpoint proteins and plays essential roles in both replication and checkpoint responses. We have previously identified four novel fission yeast mutants of rad4+(TopBP1) to explore how Rad4(TopBP1), a single protein, can play multiple roles in genomic integrity maintenance. Among the four novel mutants, rad4-c17(TopBP1) is a thermosensitive mutant. Here, we characterized rad4-c17(TopBP1) and identified a rad4-c17(TopBP1) allele specific suppressor named srr2+ (suppressor of Rad4(TopBP1) R2 domain). srr2+ has previously been identified as an environmental stress-responsive gene (GenBank accession number AL049644.1, locus spcc191.01). srr2+ null cells are sensitive to hydroxyurea (HU) at elevated temperatures. Deletion of srr2+ in rad4-c17(TopBP1) exacerbates the HU sensitivity of the mutant. Overexpression of srr2+ suppresses the rad4-c17(TopBP1) mutant sensitivity to temperature and HU and restores the compromised ability of rad4-c17(TopBP1) to activating Cds1 kinase in response to HU treatment. Furthermore, stress-activated MAPK, Spc1 (also known as StyI or Phh1), induces the expression and phosphorylation of the Srr2 protein. Significantly, environmental stress induces co-precipitation of Srr2 protein with Rad4(TopBP1), and the co-precipitation is compromised in the rad4-c17(TopBP1) mutant. These results have led us to propose a model; Rad4(TopBP1) exists in a large protein complex to coordinate genomic perturbations with checkpoint responses to maintain genomic integrity. In addition, when cells experience environmental stress, Rad4(TopBP1) associates with Srr2, an Spc1 MAPK-responsive protein, to survive the stress, potentially by providing a link of the Spc1 MAPK response to checkpoint responses.
Collapse
Affiliation(s)
- Lorena Taricani
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | |
Collapse
|