3
|
Ye C, Jiang S, Gong M, Min Q, Fan M, Gao J, Meng Y. Expressional Localization and Functionally Identifying an RNA Editing Enzyme BmADARa of the Silkworm Bombyx mori. INSECTS 2020; 11:insects11080523. [PMID: 32806497 PMCID: PMC7469206 DOI: 10.3390/insects11080523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
The most common type of RNA editing in metazoans is the deamination of adenosine into inosine (A-to-I) catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of proteins. The deletion or dysfunction of ADAR enzymes in higher eukaryotes can affect the efficiency of substrate editing and cause neurological disorders. However, the information concerning A-to-I RNA editing and ADAR members in the silkworm, Bombyx mori (BmADAR), is limited. In this study, a first molecular comprehensive cloning and sequence analysis of BmADAR transcripts was presented. A complete open reading frame (ORF) (BmADARa) was obtained using RT-PCR and RACE and its expression pattern, subcellular localization and A-to-I RNA-editing function on the silkworm synaptotagmin I (BmSyt I) were investigated. Subcellular localization analysis observed that BmADARa was mainly localized in the nucleus. To further study the A-to-I RNA-editing function of BmADARa, BmSyt I-pIZ-EGFP was constructed and co-transfected with BmADARa-pIZ-EGFP into BmN cells. The result demonstrates that BmADARa can functionally edit the specific site of BmSyt I. Taken together, this study not only provides insight into the function of the first ADAR enzyme in B. mori, but also lays foundations for further exploration of the functional domain of BmADARa and its editing substrates and target sites.
Collapse
Affiliation(s)
- Chongjun Ye
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, 15 Huoshan Road, Hefei 230061, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Meixia Gong
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, 10 Xiajun Road, Nanning 530007, China;
| | - Qin Min
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
| | - Manli Fan
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: (J.G.); (Y.M.); Tel.: +86-551-65786967 (Y.M.)
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: (J.G.); (Y.M.); Tel.: +86-551-65786967 (Y.M.)
| |
Collapse
|
10
|
Shen M, Bellaousov S, Hiller M, de La Grange P, Creamer TP, Malina O, Sperling R, Mathews DH, Stoilov P, Stamm S. Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure. Nucleic Acids Res 2013; 41:3819-32. [PMID: 23393189 PMCID: PMC3616728 DOI: 10.1093/nar/gkt063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023] Open
Abstract
The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates >300 alternative exons that form secondary structures enriched in A-U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch.
Collapse
MESH Headings
- Alternative Splicing/drug effects
- Base Sequence
- Exons
- HEK293 Cells
- High-Throughput Screening Assays
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Pyrvinium Compounds/metabolism
- Pyrvinium Compounds/pharmacology
- RNA Editing
- RNA Precursors/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/drug effects
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Stanislav Bellaousov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Michael Hiller
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Pierre de La Grange
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Trevor P. Creamer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Orit Malina
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Ruth Sperling
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - David H. Mathews
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Peter Stoilov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany GenoSplice technology, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75010 Paris, France, Department of Biochemistry and Biophysics,University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA, Department of Biochemistry, West Virginia University, Morgantown, P.O. Box 9142, WV 26506, USA, Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|