1
|
Trakroo D, Agarwal P, Alekar A, Ghosh SK. Nonessential kinetochore proteins contribute to meiotic chromosome condensation through polo-like kinase. Mol Biol Cell 2025; 36:ar14. [PMID: 39705398 PMCID: PMC11809314 DOI: 10.1091/mbc.e24-08-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Chromosome condensation plays a pivotal role during faithful chromosome segregation, hence, understanding the factors that drive condensation is crucial to get mechanistic insight into chromosome segregation. Previously, we showed that in budding yeast, the absence of the nonessential kinetochore proteins affects chromatin-condensin association in meiosis but not in mitosis. A differential organization of the kinetochores, that we and others observed earlier during mitosis and meiosis may contribute to the meiotic-specific role. Here, with our in-depth investigation using in vivo chromosome condensation assays in cells lacking a nonessential kinetochore protein, Ctf19, we establish that these proteins have roles in achieving a higher meiotic condensation without influencing much of the mitotic condensation. We further observed an accumulation of the polo-like kinase Cdc5 owing to its higher protein stability in ctf19Δ meiotic cells. High Cdc5 activity causes hyperphosphorylation of the condensin resulting in its reduced stability and concomitant decreased association with the chromatin. Overall, our findings highlight the role of Ctf19 in promoting meiotic chromosome condensation by influencing the activity of Cdc5 and thereby affecting the stability and association of condensin with the chromatin.
Collapse
Affiliation(s)
- Deepika Trakroo
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | - Anushka Alekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
2
|
Hall PM, Mayse LA, Bai L, Smolka MB, Pugh BF, Wang MD. High-Resolution Genome-Wide Maps Reveal Widespread Presence of Torsional Insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.11.617876. [PMID: 39416127 PMCID: PMC11482950 DOI: 10.1101/2024.10.11.617876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Torsional stress in chromatin plays a fundamental role in cellular functions, influencing key processes such as transcription, replication, and chromatin organization. Transcription and other processes may generate and be regulated by torsional stress. In the genome, the interplay of these processes creates complicated patterns of both positive (+) and negative (-) torsion. However, a challenge in generating an accurate torsion map is determining the zero-torsion baseline signal, which is conflated with chromatin accessibility. Here, we introduce a high-resolution method based on the intercalator trimethylpsoralen (TMP) to address this challenge. We describe a method to establish the zero-torsion baseline while preserving the chromatin state of the genome of S. cerevisiae. This approach enables both high-resolution mapping of accessibility and torsional stress in chromatin in the cell. Our analysis shows transcription-generated torsional domains consistent with the twin-supercoiled-domain model of transcription and suggests a role for torsional stress in recruiting topoisomerases and in regulating 3D genome architecture via cohesin. Significantly, we reveal that insulator sequence-specific transcription factors decouple torsion between divergent promoters, whereas torsion spreads between divergent promoters lacking these factors, suggesting that torsion serves as a regulatory mechanism in these regions. Although insulators are known to decouple gene expression, our finding provides a physical explanation of how such decoupling may occur. This new method provides a potential path forward for using TMP to measure torsional stress in the genome without the confounding contribution of accessibility in chromatin.
Collapse
Affiliation(s)
- Porter M. Hall
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Lauren A. Mayse
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Fold-change of chromatin condensation in yeast is a conserved property. Sci Rep 2022; 12:17393. [PMID: 36253460 PMCID: PMC9576780 DOI: 10.1038/s41598-022-22340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
During mitosis, chromatin is condensed and organized into mitotic chromosomes. Condensation is critical for genome stability and dynamics, yet the degree of condensation is significantly different between multicellular and single-cell eukaryotes. What is less clear is whether there is a minimum degree of chromosome condensation in unicellular eukaryotes. Here, we exploited two-photon microscopy to analyze chromatin condensation in live and fixed cells, enabling studies of some organisms that are not readily amenable to genetic modification. This includes the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, and Candida albicans, as well as a protist Trypanosoma brucei. We found that mitotic chromosomes in this range of species are condensed about 1.5-fold relative to interphase chromatin. In addition, we used two-photon microscopy to reveal that chromatin reorganization in interphase human hepatoma cells infected by the hepatitis C virus is decondensed compared to uninfected cells, which correlates with the previously reported viral-induced changes in chromatin dynamics. This work demonstrates the power of two-photon microscopy to analyze chromatin in a broad range of cell types and conditions, including non-model single-cell eukaryotes. We suggest that similar condensation levels are an evolutionarily conserved property in unicellular eukaryotes and important for proper chromosome segregation. Furthermore, this provides new insights into the process of chromatin condensation during mitosis in unicellular organisms as well as the response of human cells to viral infection.
Collapse
|
4
|
Brustel J, Muramoto T, Fumimoto K, Ellins J, Pears CJ, Lakin ND. Linking DNA repair and cell cycle progression through serine ADP-ribosylation of histones. Nat Commun 2022; 13:185. [PMID: 35027540 PMCID: PMC8758696 DOI: 10.1038/s41467-021-27867-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/19/2021] [Indexed: 01/24/2023] Open
Abstract
Although serine ADP-ribosylation (Ser-ADPr) by Poly(ADP-ribose)-polymerases is a cornerstone of the DNA damage response, how this regulates DNA repair and genome stability is unknown. Here, we exploit the ability to manipulate histone genes in Dictyostelium to identify that ADPr of the histone variant H3b at S10 and S28 maintains genome stability by integrating double strand break (DSB) repair with mitotic entry. Given the critical requirement for mitotic H3S10/28 phosphorylation, we develop separation of function mutations that maintain S10 phosphorylation whilst disrupting ADPr. Mechanistically, this reveals a requirement for H3bS10/28 ADPr in non-homologous end-joining by recruiting Ku to DSBs. Moreover, this also identifies H3bS10/S28 ADPr is critical to prevent premature mitotic entry with unresolved DNA damage, thus maintaining genome stability. Together, these data demonstrate how serine ADPr of histones coordinates DNA repair with cell cycle progression to maintain genome stability.
Collapse
Affiliation(s)
- Julien Brustel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Kazuki Fumimoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Jessica Ellins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
5
|
Kramer EM, Tayjasanant PA, Cordone B. Scaling Laws for Mitotic Chromosomes. Front Cell Dev Biol 2021; 9:684278. [PMID: 34249936 PMCID: PMC8262490 DOI: 10.3389/fcell.2021.684278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
During mitosis in higher eukaryotes, each chromosome condenses into a pair of rod-shaped chromatids. This process is co-regulated by the activity of several gene families, and the underlying biophysics remains poorly understood. To better understand the factors regulating chromosome condensation, we compiled a database of mitotic chromosome size and DNA content from the tables and figures of >200 published papers. A comparison across vertebrate species shows that chromosome width, length and volume scale with DNA content to the powers ∼1/4, ∼1/2, and ∼1, respectively. Angiosperms (flowering plants) show a similar length scaling, so this result is not specific to vertebrates. Chromosome shape and size thus satisfy two conditions: (1) DNA content per unit volume is approximately constant and (2) the cross-sectional area increases proportionately with chromosome length. Since viscous drag forces during chromosome movement are expected to scale with length, we hypothesize that the cross-section increase is necessary to limit the occurrence of large chromosome elongations that could slow or stall mitosis. Lastly, we note that individual vertebrate karyotypes typically exhibit a wider range of chromosome lengths as compared with angiosperms.
Collapse
Affiliation(s)
- Eric M Kramer
- Department of Physics, Bard College at Simon's Rock, Great Barrington, MA, United States
| | - P A Tayjasanant
- Department of Physics, Bard College at Simon's Rock, Great Barrington, MA, United States
| | - Bethan Cordone
- Department of Physics, Bard College at Simon's Rock, Great Barrington, MA, United States
| |
Collapse
|
6
|
Mostofa MG, Morshed S, Mase S, Hosoyamada S, Kobayashi T, Ushimaru T. Cdc14 protein phosphatase and topoisomerase II mediate rDNA dynamics and nucleophagic degradation of nucleolar proteins after TORC1 inactivation. Cell Signal 2020; 79:109884. [PMID: 33321182 DOI: 10.1016/j.cellsig.2020.109884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicits nucleophagy degrading nucleolar proteins in budding yeast. After TORC1 inactivation, nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas ribosomal DNA (rDNA encoding rRNA) escapes from the NVJ. Condensin-mediated rDNA condensation promotes the repositioning and nucleophagic degradation of nucleolar proteins. However, the molecular mechanism of TORC1 inactivation-induced chromosome condensation is still unknown. Here, we show that Cdc14 protein phosphatase and topoisomerase II (Topo II), which are engaged in rDNA condensation in mitosis, facilitate rDNA condensation after TORC1 inactivation. rDNA condensation after rapamycin treatment was compromised in cdc14-1 and top2-4 mutants. In addition, the repositioning of rDNA and nucleolar proteins and nucleophagic degradation of nucleolar proteins were impeded in these mutants. Furthermore, Cdc14 and Topo II were required for the survival of quiescent cells in prolonged nutrient-starved conditions. This study reveals that these factors are critical for starvation responses.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Shamsul Morshed
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Satoru Mase
- Department of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Shun Hosoyamada
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan; Department of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan.
| |
Collapse
|
7
|
Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Curr Genet 2020; 67:267-281. [PMID: 33159551 DOI: 10.1007/s00294-020-01124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.
Collapse
|
8
|
Lamothe R, Costantino L, Koshland DE. The spatial regulation of condensin activity in chromosome condensation. Genes Dev 2020; 34:819-831. [PMID: 32354834 PMCID: PMC7263143 DOI: 10.1101/gad.335471.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.
Collapse
Affiliation(s)
- Rebecca Lamothe
- University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
9
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
10
|
Yamin K, Assa M, Matityahu A, Onn I. Analyzing chromosome condensation in yeast by second-harmonic generation microscopy. Curr Genet 2019; 66:437-443. [PMID: 31535185 DOI: 10.1007/s00294-019-01034-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023]
Abstract
Condensation is a fundamental property of mitotic chromosomes in eukaryotic cells. However, analyzing chromosome condensation in yeast is a challenging task while existing methods have notable weaknesses. Second-harmonic generation (SHG) microscopy is a label-free, advanced imaging technique for measuring the surface curve of isotropic molecules such as chromatin in live cells. We applied this method to detect changes in chromatin organization throughout the cell cycle in live yeast cells. We showed that SHG microscopy can be used to identify changes in chromatin organization throughout the cell cycle and in response to inactivation of the SMC complexes, cohesin and condensin. Implementation of this method will improve our ability to analyze chromatin structure in protozoa and will enhance our understanding of chromatin organization in eukaryotic cells.
Collapse
Affiliation(s)
- Katreena Yamin
- Chromosome Instability and Dynamics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- Imaging Unit, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
11
|
Wei-Shan H, Amit VC, Clarke DJ. Cell cycle regulation of condensin Smc4. Oncotarget 2019; 10:263-276. [PMID: 30719224 PMCID: PMC6349450 DOI: 10.18632/oncotarget.26467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The condensin complex is a conserved ATPase which promotes the compaction of chromatin during mitosis in eukaryotic cells. Condensin complexes have in addition been reported to contribute to interphase processes including sister chromatid cohesion. It is not understood how condensins specifically become competent to facilitate chromosome condensation in preparation for chromosome segregation in anaphase. Here we describe evidence that core condensin subunits are regulated at the level of protein stability in budding yeast. In particular, Smc2 and Smc4 abundance is cell cycle regulated, peaking at mitosis and falling to low levels in interphase. Smc4 degradation at the end of mitosis is dependent on the Anaphase Promoting Complex/Cyclosome and is mediated by the proteasome. Overproduction of Smc4 results in delayed decondensation, but has a limited ability to promote premature condensation in interphase. Unexpectedly, the Mad2 spindle checkpoint protein is required for mitotic Smc4 degradation. These studies have revealed the novel finding that condensin protein levels are cell cycle regulated and have identified the factors necessary for Smc4 proteolysis.
Collapse
Affiliation(s)
- Hsu Wei-Shan
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vas C. Amit
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
- Present address: Cargill Inc., Wayzata, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
12
|
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell 2018; 175:780-795.e15. [PMID: 30318142 PMCID: PMC6197839 DOI: 10.1016/j.cell.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | | | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Faculty of Medicine, Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Mathematics and Natural Sciences, Department of Biosciences, University of Oslo, Norway
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Piskadlo E, Oliveira RA. A Topology-Centric View on Mitotic Chromosome Architecture. Int J Mol Sci 2017; 18:E2751. [PMID: 29258269 PMCID: PMC5751350 DOI: 10.3390/ijms18122751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
Mitotic chromosomes are long-known structures, but their internal organization and the exact process by which they are assembled are still a great mystery in biology. Topoisomerase II is crucial for various aspects of mitotic chromosome organization. The unique ability of this enzyme to untangle topologically intertwined DNA molecules (catenations) is of utmost importance for the resolution of sister chromatid intertwines. Although still controversial, topoisomerase II has also been proposed to directly contribute to chromosome compaction, possibly by promoting chromosome self-entanglements. These two functions raise a strong directionality issue towards topoisomerase II reactions that are able to disentangle sister DNA molecules (in trans) while compacting the same DNA molecule (in cis). Here, we review the current knowledge on topoisomerase II role specifically during mitosis, and the mechanisms that directly or indirectly regulate its activity to ensure faithful chromosome segregation. In particular, we discuss how the activity or directionality of this enzyme could be regulated by the SMC (structural maintenance of chromosomes) complexes, predominantly cohesin and condensin, throughout mitosis.
Collapse
Affiliation(s)
- Ewa Piskadlo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
14
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
15
|
Schalbetter SA, Goloborodko A, Fudenberg G, Belton JM, Miles C, Yu M, Dekker J, Mirny L, Baxter J. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol 2017; 19:1071-1080. [PMID: 28825700 PMCID: PMC5640152 DOI: 10.1038/ncb3594] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modelling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids, while condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate that this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead, it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Structures
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Computer Simulation
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mitosis
- Models, Genetic
- Models, Molecular
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Cohesins
Collapse
Affiliation(s)
| | - Anton Goloborodko
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jon-Matthew Belton
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Catrina Miles
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Miao Yu
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jonathan Baxter
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
16
|
Schiklenk C, Petrova B, Haering CH. A Protocol for Measuring Mitotic Chromosome Condensation Quantitatively in Fission Yeast Cells. Methods Mol Biol 2017; 1515:245-255. [PMID: 27797084 DOI: 10.1007/978-1-4939-6545-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Even though the formation of compact cylindrical chromosomes early during mitosis or meiosis is a prerequisite for the successful segregation of eukaryotic genomes, little is known about the molecular basis of this chromosome condensation process. Here, we describe in detail the protocol for a quantitative chromosome condensation assay in fission yeast cells, which is based on precise time-resolved measurements of the distances between two fluorescently labeled positions on the same chromosome. In combination with an automated computational analysis pipeline, this assay enables the study of various candidate proteins for their roles in regulating genome topology during cell divisions.
Collapse
Affiliation(s)
- Christoph Schiklenk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
17
|
Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 2016; 27:3357-3368. [PMID: 27605704 PMCID: PMC5170867 DOI: 10.1091/mbc.e16-07-0506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin-nucleosomes-are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an "open" configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome-nucleosome associations.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sachiko Tamura
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- National Institute of Genetics and Sokendai, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos, Singapore 138673, Singapore.,Bioprocessing Technology Institute, Singapore 138668, Singapore.,Department of Pharmacology, National University of Singapore, Singapore 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
18
|
Abstract
The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.
Collapse
Affiliation(s)
- Ewa Piskadlo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156 , Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156 , Portugal
| |
Collapse
|
19
|
Kruitwagen T, Denoth-Lippuner A, Wilkins BJ, Neumann H, Barral Y. Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation. eLife 2015; 4:e1039. [PMID: 26615018 PMCID: PMC4755758 DOI: 10.7554/elife.10396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022] Open
Abstract
The segregation of eukaryotic chromosomes during mitosis requires their extensive folding into units of manageable size for the mitotic spindle. Here, we report on how phosphorylation at serine 10 of histone H3 (H3 S10) contributes to this process. Using a fluorescence-based assay to study local compaction of the chromatin fiber in living yeast cells, we show that chromosome condensation entails two temporally and mechanistically distinct processes. Initially, nucleosome-nucleosome interaction triggered by H3 S10 phosphorylation and deacetylation of histone H4 promote short-range compaction of chromatin during early anaphase. Independently, condensin mediates the axial contraction of chromosome arms, a process peaking later in anaphase. Whereas defects in chromatin compaction have no observable effect on axial contraction and condensin inactivation does not affect short-range chromatin compaction, inactivation of both pathways causes synergistic defects in chromosome segregation and cell viability. Furthermore, both pathways rely at least partially on the deacetylase Hst2, suggesting that this protein helps coordinating chromatin compaction and axial contraction to properly shape mitotic chromosomes. DOI:http://dx.doi.org/10.7554/eLife.10396.001 DNA in humans, yeast and other eukaryotic organisms is packaged in structures called chromosomes. When a cell divides these chromosomes are copied and then the matching pairs are separated so that each daughter cell has a full set of its genome. To enable these events to take place, the DNA must become more tightly packed so that the chromosomes become rigid units with projections called arms. Any failure in this chromosome “condensation” leads to the loss of chromosomes during cell division. Within a chromosome, sections of DNA are wrapped around groups of proteins to make a series of linked units called nucleosomes, which resemble beads on a string. These units and other scaffold proteins together make a structure called chromatin and establish the overall shape of the chromosome. However, it is not exactly clear how the nucleosomes and scaffold proteins are rearranged during condensation. Kruitwagen et al. used microscopy to study chromosome condensation in budding yeast. The experiments reveal that condensation involves two separate processes. First, modifications to the nucleosomes result in these units becoming more tightly packed in a process called short-range compaction. Second, a group of proteins called condensin is responsible for rearranging the compacted chromatin to enforce higher-order structure on the arms of the condensed chromosome (long-range contraction). Further experiments suggest that an enzyme called Hst2 may help to co-ordinate these processes to ensure that chromosomes adopt the right shape before the cell divides. For example, Hst2 ensures that longer chromosomes condense more than shorter ones. A future challenge will be to find out whether chromosome condensation works in a similar way in humans and other large eukaryotes, which form much larger chromosomes with more complicated structures than yeast. DOI:http://dx.doi.org/10.7554/eLife.10396.002
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Annina Denoth-Lippuner
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Bryan J Wilkins
- Free Floater (Junior) Research Group "Applied Synthetic Biology," Institute for Microbiology and Genetics, Georg- August University Göttingen, Göttingen, Germany
| | - Heinz Neumann
- Free Floater (Junior) Research Group "Applied Synthetic Biology," Institute for Microbiology and Genetics, Georg- August University Göttingen, Göttingen, Germany
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Abstract
How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.
Collapse
Affiliation(s)
- Marc Kschonsak
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
21
|
Cheng TMK, Heeger S, Chaleil RAG, Matthews N, Stewart A, Wright J, Lim C, Bates PA, Uhlmann F. A simple biophysical model emulates budding yeast chromosome condensation. eLife 2015; 4:e05565. [PMID: 25922992 PMCID: PMC4413874 DOI: 10.7554/elife.05565] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/31/2015] [Indexed: 12/18/2022] Open
Abstract
Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chromosomes. Comparisons of computational and experimental (4C) interaction maps, and other biophysical features, allow us to predict a mode of condensin action. Stochastic condensin-mediated pairwise interactions along the nucleosome chain generate native-like chromosome features and recapitulate chromosome compaction and individualization during mitotic condensation. Higher order interactions between condensin binding sites explain the data less well. Our results suggest that basic assumptions about chromatin behavior go a long way to explain chromosome architecture and are able to generate a molecular model of what the inside of a chromosome is likely to look like.
Collapse
Affiliation(s)
- Tammy MK Cheng
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastian Heeger
- Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics Service, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jon Wright
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Affiliation(s)
- Helder Maiato
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| | - Olga Afonso
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| | - Irina Matos
- Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular, Universidade do Porto; Porto Portugal
- Cell Division Unit, Department of Experimental Biology; Faculdade de Medicina, Universidade do Porto; Porto Portugal
| |
Collapse
|
23
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
24
|
Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 2014; 124:81-94. [DOI: 10.1007/s00412-014-0486-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
|
25
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
26
|
Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC. Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis. Mol Cell Proteomics 2013; 13:594-605. [PMID: 24319056 DOI: 10.1074/mcp.m113.032680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Degradation of the M phase cyclins triggers the exit from M phase. Cdc14 is the major phosphatase required for the exit from the M phase. One of the functions of Cdc14 is to dephosphorylate and activate the Cdh1/APC/C complex, resulting in the degradation of the M phase cyclins. However, other crucial targets of Cdc14 for mitosis and cytokinesis remain to be elucidated. Here we systematically analyzed the positions of dephosphorylation sites for Cdc14 in the budding yeast Saccharomyces cerevisiae. Quantitative mass spectrometry identified a total of 835 dephosphorylation sites on 455 potential Cdc14 substrates in vivo. We validated two events, and through functional studies we discovered that Cdc14-mediated dephosphorylation of Smc4 and Bud3 is essential for proper mitosis and cytokinesis, respectively. These results provide insight into the Cdc14-mediated pathways for exiting the M phase.
Collapse
Affiliation(s)
- Li Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Stephens AD, Quammen CW, Chang B, Haase J, Taylor RM, Bloom K. The spatial segregation of pericentric cohesin and condensin in the mitotic spindle. Mol Biol Cell 2013; 24:3909-19. [PMID: 24152737 PMCID: PMC3861086 DOI: 10.1091/mbc.e13-06-0325] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022] Open
Abstract
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Cory W. Quammen
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Binny Chang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Julian Haase
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Russell M. Taylor
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
28
|
Furniss KL, Tsai HJ, Byl JAW, Lane AB, Vas AC, Hsu WS, Osheroff N, Clarke DJ. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation. PLoS Genet 2013; 9:e1003832. [PMID: 24098144 PMCID: PMC3789831 DOI: 10.1371/journal.pgen.1003832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/10/2013] [Indexed: 02/04/2023] Open
Abstract
By necessity, the ancient activity of type II topoisomerases co-evolved with the double-helical structure of DNA, at least in organisms with circular genomes. In humans, the strand passage reaction of DNA topoisomerase II (Topo II) is the target of several major classes of cancer drugs which both poison Topo II and activate cell cycle checkpoint controls. It is important to know the cellular effects of molecules that target Topo II, but the mechanisms of checkpoint activation that respond to Topo II dysfunction are not well understood. Here, we provide evidence that a checkpoint mechanism monitors the strand passage reaction of Topo II. In contrast, cells do not become checkpoint arrested in the presence of the aberrant DNA topologies, such as hyper-catenation, that arise in the absence of Topo II activity. An overall reduction in Topo II activity (i.e. slow strand passage cycles) does not activate the checkpoint, but specific defects in the T-segment transit step of the strand passage reaction do induce a cell cycle delay. Furthermore, the cell cycle delay depends on the divergent and catalytically inert C-terminal region of Topo II, indicating that transmission of a checkpoint signal may occur via the C-terminus. Other, well characterized, mitotic checkpoints detect DNA lesions or monitor unattached kinetochores; these defects arise via failures in a variety of cell processes. In contrast, we have described the first example of a distinct category of checkpoint mechanism that monitors the catalytic cycle of a single specific enzyme in order to determine when chromosome segregation can proceed faithfully.
Collapse
Affiliation(s)
- Katherine L. Furniss
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hung-Ji Tsai
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Andrew B. Lane
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amit C. Vas
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shan Hsu
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
29
|
Stephens AD, Haggerty RA, Vasquez PA, Vicci L, Snider CE, Shi F, Quammen C, Mullins C, Haase J, Taylor RM, Verdaasdonk JS, Falvo MR, Jin Y, Forest MG, Bloom K. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. ACTA ACUST UNITED AC 2013; 200:757-72. [PMID: 23509068 PMCID: PMC3601350 DOI: 10.1083/jcb.201208163] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force. The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C, Giaever G, Nislow C, Raught B. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. ACTA ACUST UNITED AC 2013; 201:145-63. [PMID: 23547032 PMCID: PMC3613684 DOI: 10.1083/jcb.201210019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple large-scale analyses in yeast implicate SUMO chain function in the
maintenance of higher-order chromatin structure and transcriptional repression
of environmental stress response genes. Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form
oligomeric “chains,” but the biological functions of these
superstructures are not well understood. Here, we created mutant yeast strains
unable to synthesize SUMO chains (smt3allR) and
subjected them to high-content microscopic screening, synthetic genetic array
(SGA) analysis, and high-density transcript profiling to perform the first
global analysis of SUMO chain function. This comprehensive assessment identified
144 proteins with altered localization or intensity in
smt3allR cells, 149 synthetic genetic
interactions, and 225 mRNA transcripts (primarily consisting of stress- and
nutrient-response genes) that displayed a >1.5-fold increase in
expression levels. This information-rich resource strongly implicates SUMO
chains in the regulation of chromatin. Indeed, using several different
approaches, we demonstrate that SUMO chains are required for the maintenance of
normal higher-order chromatin structure and transcriptional repression of
environmental stress response genes in budding yeast.
Collapse
Affiliation(s)
- Tharan Srikumar
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The Saccharomyces cerevisiae RhoGAP Rgd1 is phosphorylated by the Aurora B like kinase Ipl1. Biochem Biophys Res Commun 2013; 433:1-5. [PMID: 23454383 DOI: 10.1016/j.bbrc.2013.02.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 11/21/2022]
Abstract
Polarized growth of the yeast Saccharomyces cerevisiae depends on different biological processes and requires several signaling pathways. Signaling is mediated through a set of proteins, which include Rho3p and Rho4p GTPases. Although these two proteins are involved in the control of distinct aspects of polarized growth in yeast, they have a common regulator: the Rgd1 RhoGAP protein. Here we demonstrate that Rgd1p is phosphorylated by the Aurora B like kinase Ipl1 and we observe that loss of Ipl1 function leads to a new Rgd1p distribution in a small part of the cell population.
Collapse
|
32
|
Abstract
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.
Collapse
|
33
|
Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genet 2012; 8:e1002978. [PMID: 23133392 PMCID: PMC3486896 DOI: 10.1371/journal.pgen.1002978] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mammalian common fragile sites (CFSs) whose stability is regulated by ATR. Perturbation during S phase, leading to elevated levels of stalled replication forks, is necessary but not sufficient for chromosome breakage at RSZs or CFSs. To address the nature of additional event(s) required for the break formation, we examined involvement of the currently known or implicated mechanisms of endogenous chromosome breakage, including errors in replication fork restart, premature mitotic chromosome condensation, spindle tension, anaphase, and cytokinesis. Results revealed that chromosome breakage at RSZs is independent of the RAD52 epistasis group genes and of TOP3, SGS1, SRS2, MMS4, or MUS81, indicating that homologous recombination and other recombination-related processes associated with replication fork restart are unlikely to be involved. We also found spindle force, anaphase, or cytokinesis to be dispensable. RSZ breakage, however, required genes encoding condensin subunits (YCG1, YSC4) and topoisomerase II (TOP2). We propose that chromosome break formation at RSZs following Mec1 inactivation, a model for mammalian fragile site breakage, is mediated by internal chromosomal stress generated during mitotic chromosome condensation. Chromosome breakage can occur during normal cell division. When it occurs, the breaks do not arise randomly throughout the genome, but at preferred locations referred to as fragile sites. Chromosome breakage at fragile sites is an evolutionarily conserved phenomenon, implicated in evolution and speciation. In humans, fragile site instability is also implicated in mental retardation and cancer. Despite its biological and clinical relevance, the mechanism(s) by which breaks are introduced at mammalian fragile sites remains unresolved. Although several plausible models have been proposed, it has not been possible to ascertain their contribution, largely due to the lack of a suitable experimental system. Here, we study a yeast model system that closely recapitulates the phenomenon of chromosome breakage at mammalian fragile sites. We eliminate all but one of the currently considered models—premature compaction of the incompletely replicated genome in preparation for their segregation during cell division. We also find that the breakage required functions of three proteins involved in the genome compaction, an essential process that is evolutionarily conserved from bacteria to humans. Our findings suggest that a fundamental chromosomal process required for normal cell division can paradoxically cause genome instability and/or cell death, by triggering chromosome breakage at fragile sites.
Collapse
|
34
|
Ladouceur AM, Ranjan R, Maddox PS. Cell size: chromosomes get slapped by a midzone ruler. Curr Biol 2011; 21:R388-90. [PMID: 21601795 DOI: 10.1016/j.cub.2011.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spatial and temporal coordination of mitotic events has been generally attributed to the coincidental outcome of increasing cyclin-dependent kinase activity. A recent study reports that mitotic events and structures previously considered to be independently controlled are capable of trans-regulation to ensure genomic integrity.
Collapse
Affiliation(s)
- Anne-Marie Ladouceur
- Systems Biology Option in the Graduate Program in Molecular Biology, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal QC, H3C 3J7, Canada
| | | | | |
Collapse
|
35
|
Neurohr G, Naegeli A, Titos I, Theler D, Greber B, Díez J, Gabaldón T, Mendoza M, Barral Y. A midzone-based ruler adjusts chromosome compaction to anaphase spindle length. Science 2011; 332:465-8. [PMID: 21393511 DOI: 10.1126/science.1201578] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Partitioning of chromatids during mitosis requires that chromosome compaction and spindle length scale appropriately with each other. However, it is not clear whether chromosome condensation and spindle elongation are linked. Here, we find that yeast cells could cope with a 45% increase in the length of their longest chromosome arm by increasing its condensation. The spindle midzone, aurora/Ipl1 activity, and Ser10 of histone H3 mediated this response. Thus, the anaphase spindle may function as a ruler to adapt the condensation of chromatids, promoting their segregation regardless of chromosome or spindle length.
Collapse
|
36
|
Meyer H, Drozdowska A, Dobrynin G. A role for Cdc48/p97 and Aurora B in controlling chromatin condensation during exit from mitosis. Biochem Cell Biol 2010; 88:23-8. [PMID: 20130676 DOI: 10.1139/o09-119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During cell division, chromosomes condense so that the replicated chromatids can be segregated by the mitotic spindle. While condensation is governed by cyclin-dependent kinase 1 (Cdk1) during mitotic entry and early mitosis, it is still poorly understood how condensation is maintained during anaphase after Cdk1 inactivation, and how decondensation is triggered in telophase. Here, we review recent reports that point to a novel role of Aurora B kinase in maintaining condensation and preventing premature nuclear envelope formation during exit from mitosis. Timely decondensation and nuclear envelope formation at the end of mitosis may then be triggered by two mechanisms. One is removing Aurora B phosphorylation marks from chromatin by specific phosphatases. The other is removing and inactivating Aurora B kinase itself by the ubiquitin system. We have recently provided evidence that the AAA ATPase Cdc48/p97 plays a central role in the inactivation of Aurora B, as it extracts ubiquitinated Aurora B from chromosomes and thus reduces chromatinassociated Aurora B activity.
Collapse
Affiliation(s)
- Hemmo Meyer
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland.
| | | | | |
Collapse
|
37
|
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 2009; 118:591-605. [PMID: 19533160 DOI: 10.1007/s00412-009-0220-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/22/2009] [Indexed: 12/19/2022]
Abstract
In contrast to yeast, plant interphase nuclei often display incomplete alignment (cohesion) along sister chromatid arms. Sister chromatid cohesion mediated by the multi-subunit cohesin complex is essential for correct chromosome segregation during nuclear divisions and for DNA recombination repair. The cohesin complex consists of the conserved proteins SMC1, SMC3, SCC3, and an alpha-kleisin subunit. Viable homozygous mutants could be selected for the Arabidopsis thaliana alpha-kleisins SYN1, SYN2, and SYN4, which can partially compensate each other. For the kleisin SYN3 and for the single-copy genes SMC1, SMC3, and SCC3, only heterozygous mutants were obtained that displayed between 77% and 97% of the wild-type transcript level. Compared to wild-type nuclei, sister chromatid alignment was significantly decreased along arms in 4C nuclei of the homozygous syn1 and syn4 and even of the heterozygous smc1, smc3, scc3, and syn3 mutants. Knocking out SYN1 and SYN4 additionally impaired sister centromere cohesion. Homozygous mutants of SWITCH1 (required for meiotic sister chromatid alignment) displayed sterility and decreased sister arm alignment. For the cohesin loading complex subunit SCC2, only heterozygous mutants affecting sister centromere alignment were obtained. Defects of the alpha-kleisin SYN4, which impair sister chromatid alignment in 4C differentiated nuclei, do apparently not disturb alignment during prometaphase nor cause aneuploidy in meristematic cells. The syn2, 3, 4 scc3 and swi1 mutants display a high frequency of anaphases with bridges (~10% to >20% compared to 2.6% in wild type). Our results suggest that (a) already a slight reduction of the average transcript level in heterozygous cohesin mutants may cause perturbation of cohesion, at least in some leaf cells at distinct loci; (b) the decreased sister chromatid alignment in cohesin mutants can obviously not fully be compensated by other cohesion mechanisms such as DNA concatenation; (c) some cohesin genes, in addition to cohesion, might have further essential functions (e.g., for genome stability, apparently by facilitating correct recombination repair of double-strand breaks).
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS One 2009; 4:e6831. [PMID: 19714251 PMCID: PMC2730017 DOI: 10.1371/journal.pone.0006831] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/03/2009] [Indexed: 12/25/2022] Open
Abstract
Condensins I and II in vertebrates are essential ATP-dependent complexes necessary for chromosome condensation in mitosis. Condensins depletion is known to perturb structure and function of centromeres, however the mechanism of this functional link remains elusive. Depletion of condensin activity is now shown to result in a significant loss of loading of CENP-A, the histone H3 variant found at active centromeres and the proposed epigenetic mark of centromere identity. Absence of condensins and/or CENP-A insufficiency produced a specific kinetochore defect, such that a functional mitotic checkpoint cannot prevent chromosome missegregation resulting from improper attachment of sister kinetochores to spindle microtubules. Spindle microtubule-dependent deformation of both inner kinetochores and the HEC1/Ndc80 microtubule-capturing module, then results in kinetochore separation from the Aurora B pool and ensuing reduced kinase activity at centromeres. Moreover, recovery from mitosis-inhibition by monastrol revealed a high incidence of merotelic attachment that was nearly identical with condensin depletion, Aurora B inactivation, or both, indicating that the Aurora B dysfunction is the key defect leading to chromosome missegregation in condensin-depleted cells. Thus, beyond a requirement for global chromosome condensation, condensins play a pivotal role in centromere assembly, proper spatial positioning of microtubule-capturing modules and positioning complexes of the inner centromere versus kinetochore plates.
Collapse
|
39
|
Neurohr G, Gerlich DW. Assays for mitotic chromosome condensation in live yeast and mammalian cells. Chromosome Res 2009; 17:145-54. [PMID: 19308697 DOI: 10.1007/s10577-008-9010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dynamic reorganization of chromatin into rigid and compact mitotic chromosomes is of fundamental importance for faithful chromosome segregation. Owing to the difficulty of investigating this process under physiological conditions, the exact morphological transitions and the molecular machinery driving chromosome condensation remain poorly defined. Here, we review how imaging-based methods can be used to quantitate chromosome condensation in vivo, focusing on yeast and animal tissue culture cells as widely used model systems. We discuss approaches how to address structural dynamics of condensing chromosomes and chromosome segments, as well as to probe for mechanical properties of mitotic chromosomes. Application of such methods to systematic perturbation studies will provide a means to reveal the molecular networks underlying the regulation of mitotic chromosome condensation.
Collapse
Affiliation(s)
- Gabriel Neurohr
- Institute of Biochemistry, Swiss Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
40
|
Abstract
Topoisomerase II activity is crucial to maintain genome stability through the removal of catenanes in the DNA formed during DNA replication and scaffolding the mitotic chromosome. Perturbed Topo II activity causes defects in chromosome segregation due to persistent catenations and aberrant DNA condensation during mitosis. Recently, novel top2 alleles in the yeast Saccharomyces cerevisiae revealed a checkpoint control that responds to perturbed Topo II activity. Described in this chapter are protocols for assaying the phenotypes seen in top2 mutants on a cell biological basis in live cells: activation of the Topo II checkpoint using spindle morphology, chromosome condensation using fluorescently labeled chromosomal loci, and cell cycle progression by flow cytometry. Further characterization of this novel checkpoint is warranted so that we can further our understanding of the cell cycle, genomic stability, and the possibility of identifying novel drug targets.
Collapse
|
41
|
Warsi TH, Navarro MS, Bachant J. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol Biol Cell 2008; 19:4421-33. [PMID: 18701701 DOI: 10.1091/mbc.e08-05-0547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore-spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.
Collapse
Affiliation(s)
- Tariq H Warsi
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
42
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci 2008; 121:2107-14. [PMID: 18565823 DOI: 10.1242/jcs.029132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.
Collapse
Affiliation(s)
- Laura A Díaz-Martínez
- Department of Pharmacology, UT-Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX75390, USA.
| | | | | |
Collapse
|
43
|
Abstract
During anaphase, the spindle pulls the sister kinetochores apart until the sister chromatids are fully separated from each other. Subsequently, cytokinesis cleaves between the two separated chromosome masses to form two nucleated cells. Results from Schizosaccharomyces pombe suggested that cytokinesis and chromosome segregation are not co-ordinated with each other. However, recent studies indicate that, at least in budding yeast, a checkpoint called NoCut prevents abscission when spindle elongation is impaired, and might delay cytokinesis until all chromosomes are pulled out of the cleavage plane. Here, we discuss this possibility and summarize evidence suggesting that such a checkpoint is likely to be conserved in higher eukaryotes.
Collapse
|
44
|
Dulev S, Aragon L, Strunnikov A. Unreplicated DNA in mitosis precludes condensin binding and chromosome condensation in S. cerevisiae. FRONT BIOSCI-LANDMRK 2008; 13:5838-46. [PMID: 18508626 DOI: 10.2741/3120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Condensin is the core activity responsible for chromosome condensation in mitosis. In the yeast S. cerevisiae, condensin binding is enriched at the regions where DNA replication terminates. Therefore, we investigated whether DNA replication completion determines the condensin-binding proficiency of chromatin. In order to fulfill putative mitotic requirements for condensin activity we analyzed chromosome condensation and condensin binding to unreplicated chromosomes in mitosis. For this purpose we used pGAL:CDC6 cdc15-ts cells that are known to enter mitosis without DNA replication if CDC6 transcription is repressed prior to S-phase. Both the condensation of nucleolar chromatin and proper condensin targeting to rDNA sites failed when unreplicated chromosomes were driven in mitosis. We propose that the DNA replication results in structural and/or biochemical changes to replicated chromatin, which are required for two-phase condensin binding and proper chromosome condensation.
Collapse
Affiliation(s)
- Stanimir Dulev
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
45
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Abstract
Sister chromatid cohesion is important for high fidelity chromosome segregation during anaphase. Gene products that provide structural components (cohesin complex or cohesin) and regulatory components responsible for cohesion are conserved through eukaryotes. A simple model where cohesion establishment occurs by replication through static cohesin rings and cohesion dissolution occurs by Esp1p/separase mediated cleavage of the cohesin rings (Mcd1p/Rad21p/Scc1p sub-unit cleavage) has become widespread. A growing body of evidence is inconsistent with this ring cleavage model. This review will summarize the evidence showing that cohesin complex is not static but is regulated at multiple cell cycle stages before anaphase in a separase independent manner. Separase is indeed required at anaphase for complete chromosome segregation. However, multiple mechanisms for cohesion dissolution appear to act concurrently during anaphase. Separase is only one such mechanism and its importance varies from organism to organism. The idea that cohesin is a dynamic complex subjected to regulation at various cell cycle stages by multiple mechanisms makes sense in light of the myriad functions in which it has been implicated, such as DNA damage repair, gene silencing and chromosome condensation.
Collapse
Affiliation(s)
- Vincent Guacci
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA.
| |
Collapse
|