1
|
Duncan MC. New directions for the clathrin adaptor AP-1 in cell biology and human disease. Curr Opin Cell Biol 2022; 76:102079. [DOI: 10.1016/j.ceb.2022.102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
2
|
Yanguas F, Moscoso-Romero E, Valdivieso MH. Ent3 and GGA adaptors facilitate diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. Sci Rep 2019; 9:10747. [PMID: 31341193 PMCID: PMC6656748 DOI: 10.1038/s41598-019-47035-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Carboxypeptidases Y (Cpy1) and S (Cps1), the receptor Vps10, and the ATPase subunit Vph1 follow the carboxypeptidase Y (CPY) pathway from the trans-Golgi network (TGN) to the prevacuolar endosome (PVE). Using Schizosaccharomyces pombe quantitative live-cell imaging, biochemical and genetic analyses, we extended the previous knowledge and showed that collaboration between Gga22, the dominant Golgi-localized Gamma-ear-containing ARF-binding (GGA) protein, and Gga21, and between Gga22 and the endosomal epsin Ent3, was required for efficient: i) Vps10 anterograde trafficking from the TGN to the PVE; ii) Vps10 retrograde trafficking from the PVE to the TGN; iii) Cps1 exit from the TGN, and its sorting in the PVE en route to the vacuole; and iv) Syb1/Snc1 recycling to the plasma membrane through the PVE. Therefore, monomeric clathrin adaptors facilitated the trafficking of Vps10 in both directions of the CPY pathway, and facilitated trafficking events of Cps1 in different organelles. By contrast, they were dispensable for Vph1 trafficking. Thus, these adaptors regulated the traffic of some, but not all, of the cargo of the CPY pathway, and regulated the traffic of cargoes that do not follow this pathway. Additionally, this collaboration was required for PVE organization and efficient growth under stress.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
De M, Oleskie AN, Ayyash M, Dutta S, Mancour L, Abazeed ME, Brace EJ, Skiniotis G, Fuller RS. The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J Cell Biol 2017; 216:425-439. [PMID: 28122955 PMCID: PMC5294781 DOI: 10.1083/jcb.201606078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/04/2016] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
VPS13 proteins are widely conserved in eukaryotes and associated with human neurodegenerative and neurodevelopmental diseases. De et al. describe the lipid specificity and structure of yeast Vps13p, providing insight into its role in both TGN late endosome transport and TGN homotypic fusion. Yeast VPS13 is the founding member of a eukaryotic gene family of growing interest in cell biology and medicine. Mutations in three of four human VPS13 genes cause autosomal recessive neurodegenerative or neurodevelopmental disease, making yeast Vps13p an important structural and functional model. Using cell-free reconstitution with purified Vps13p, we show that Vps13p is directly required both for transport from the trans-Golgi network (TGN) to the late endosome/prevacuolar compartment (PVC) and for TGN homotypic fusion. Vps13p must be in complex with the small calcium-binding protein Cdc31p to be active. Single-particle electron microscopic analysis of negatively stained Vps13p indicates that this 358-kD protein is folded into a compact rod-shaped density (20 × 4 nm) with a loop structure at one end with a circular opening ∼6 nm in diameter. Vps13p exhibits ATP-stimulated binding to yeast membranes and specific interactions with phosphatidic acid and phosphorylated forms of phosphatidyl inositol at least in part through the binding affinities of conserved N- and C-terminal domains.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Austin N Oleskie
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mariam Ayyash
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Somnath Dutta
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Liliya Mancour
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Eddy J Brace
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Georgios Skiniotis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert S Fuller
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
5
|
Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes. Curr Opin Hematol 2015; 21:201-9. [PMID: 24626044 DOI: 10.1097/moh.0000000000000035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This review discusses the mechanisms involved in the generation of thorny red blood cells (RBCs), known as acanthocytes, in patients with neuroacanthocytosis, a heterogenous group of neurodegenerative hereditary disorders that include chorea-acanthocytosis (ChAc) and McLeod syndrome (MLS). RECENT FINDINGS Although molecular defects associated with neuroacanthocytosis have been identified recently, their pathophysiology and the related RBC abnormalities are largely unknown. Studies in ChAc RBCs have shown an altered association between the cytoskeleton and the integral membrane protein compartment in the absence of major changes in RBC membrane composition. In ChAc RBCs, abnormal Lyn kinase activation in a Syk-independent fashion has been reported recently, resulting in increased band 3 tyrosine phosphorylation and perturbation of the stability of the multiprotein band 3-based complexes bridging the membrane to the spectrin-based membrane skeleton. Similarly, in MLS, the absence of XK-protein, which is associated with the spectrin-actin-4.1 junctional complex, is associated with an abnormal membrane protein phosphorylation state, with destabilization of the membrane skeletal network resulting in generation of acanthocytes. SUMMARY A novel mechanism in generation of acanthocytes involving abnormal Lyn activation, identified in ChAc, expands the acanthocytosis phenomenon toward protein-protein interactions, controlled by phosphorylation-related abnormal signaling.
Collapse
|
6
|
McDonold CM, Fromme JC. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network. Dev Cell 2014; 30:759-67. [PMID: 25220393 DOI: 10.1016/j.devcel.2014.07.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/06/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022]
Abstract
Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi.
Collapse
Affiliation(s)
- Caitlin M McDonold
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Hecht KA, O'Donnell AF, Brodsky JL. The proteolytic landscape of the yeast vacuole. CELLULAR LOGISTICS 2014; 4:e28023. [PMID: 24843828 PMCID: PMC4022603 DOI: 10.4161/cl.28023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
The vacuole in the yeast Saccharomyces cerevisiae plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.
Collapse
Affiliation(s)
- Karen A Hecht
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Allyson F O'Donnell
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
8
|
De M, Abazeed ME, Fuller RS. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation. Mol Biol Cell 2013; 24:495-509. [PMID: 23408788 PMCID: PMC3571872 DOI: 10.1091/mbc.e12-11-0843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The VHS domains of yeast Gga1p and Gga2p bind sites (GBSs) in the Kex2p and Vps10p cytosolic tails. Phosphorylation of Ser-780 in the Kex2p GBS enhances Kex2p transport from the TGN to the PVC and is induced by cell wall damage. Kex2p GBS function is shown by direct binding, cell-free transport, and in vivo assays for Kex2 localization. Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780 in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780 > Ser780 > Ala780. Affinity-purified antibody against a peptide containing phospho-Ser780 recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780 is phosphorylated in vivo; phosphorylation of Ser780 is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780 alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
9
|
De M, Abazeed ME, Fuller RS. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation. Mol Biol Cell 2013. [DOI: 10.1091/mbc.e12-04-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human Golgi-localized, γ-ear–containing, ADP-ribosylation factor–binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga1p and Gga2p Vps27, Hrs, Stam (VHS) domains both bind a site in the Kex2p C-tail and that the Gga2p VHS domain binds a site in the Vps10p C-tail. Binding requires deletion of an apparently autoinhibitory sequence in the Gga2p hinge. Ser780in the Kex2p C-tail is crucial for binding: an Ala substitution blocks but an Asp substitution permits binding. Biochemical assays using purified Gga2p VHS–GGA and TOM1 (GAT) and glutathione S-transferase–Kex2p C-tail fusions show that Gga2p binds directly to the Kex2p C-tail, with relative affinities Asp780> Ser780> Ala780. Affinity-purified antibody against a peptide containing phospho-Ser780recognizes wild-type Kex2p but not S780A Kex2p, showing that Ser780is phosphorylated in vivo; phosphorylation of Ser780is up-regulated by cell wall–damaging drugs. Finally, mutation of Ser780alters trafficking of Kex2p both in vivo and in cell-free trans-Golgi network (TGN)–prevacuolar compartment (PVC) transport. Thus yeast Gga adaptors facilitate TGN–PVC transport by direct binding of noncanonical phosphoregulated Gga-binding sites in cargo molecules.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed E. Abazeed
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Robert S. Fuller
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:491-510. [DOI: 10.1111/j.1567-1364.2012.00810.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - Zihe Liu
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Dina Petranovic
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| |
Collapse
|
11
|
Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012; 41:4736-54. [DOI: 10.1039/c2cs15360b] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hirst J, Carmichael J. A potential role for the clathrin adaptor GGA in Drosophila spermatogenesis. BMC Cell Biol 2011; 12:22. [PMID: 21599933 PMCID: PMC3127973 DOI: 10.1186/1471-2121-12-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/20/2011] [Indexed: 12/01/2022] Open
Abstract
Background GGAs (Golgi-localised, γ-ear containing, ADP ribosylation factor-binding) are a family of clathrin adaptors that sort a number of biologically important transmembrane proteins into clathrin-coated vesicles. Knockout and knockdown studies to determine GGA function are confounded by the fact that there are 3 GGA genes in mammalian cells. Thus Drosophila melanogaster is a useful model system to study tissue expression profiles and knockdown phenotypes as there is a single GGA ortholog. Results Here we have quantified protein expression in Drosophila and show that there is >3-fold higher expression of GGA in male flies relative to female flies. In female flies the majority of GGA expression is in the head. In male flies GGA is not only expressed at high levels in the head but there is a gender specific increased expression which is due to the abundant expression of GGA in the testes. Using a highly specific antibody we have localised endogenous GGA protein in testes squashes, and visualised it in somatic and germ line cells. We show that GGA is expressed during multiple stages of sperm development, and co-stains with a marker of the trans-Golgi Network. This is most striking at the acroblast of early spermatids. In spite of the high expression of GGA in testes, knocking down its expression by >95% using transgenic RNAi fly lines did not affect male fertility. Therefore spermatogenesis in the male flies appears to progress normally with <5% GGA, most likely because alternative adaptors may be able to substitute partially or completely for the function of GGA. We also identify 'cueball' as a novel cargo for GGA, and mutants of cueball have been shown to have a male sterility phenotype. Conclusion In Drosophila we have uncovered a potential role for GGA in the testes of male flies. The gender specific higher expression of GGA, its specific enrichment in testes and its localisation to developing spermatocytes and at the acroblast of spermatids supports a role for GGA function in Drosophila spermatogenesis, even though spermatogenesis still occurs when GGA expression is depleted to <5% of control.
Collapse
Affiliation(s)
- Jennifer Hirst
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK.
| | | |
Collapse
|
13
|
Abstract
The protein processing and trafficking function of the Golgi is intimately linked to multiple intracellular signaling pathways. Assembly of Golgi trafficking structures and lipid sorting at the Golgi complex is controlled and coordinated by specific phosphoinositide kinases and phosphatases. The intra-Golgi transport machinery is also regulated by kinases belonging to several functionally distinct families, for example, MAP kinase signaling is required for mitotic disassembly of the Golgi. However, the Golgi plays an additional, prominent role in compartmentalizing other signaling cascades that originate at the plasma membrane or at other organelles. This article summarizes recent advances in our understanding of the signaling network that converges at the Golgi.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology and Hypertension and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P. Sorting of plant vacuolar proteins is initiated in the ER. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:601-14. [PMID: 20149141 DOI: 10.1111/j.1365-313x.2010.04171.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Regulation of Golgi function via phosphoinositide lipids. Semin Cell Dev Biol 2009; 20:793-800. [PMID: 19508852 DOI: 10.1016/j.semcdb.2009.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 12/22/2022]
Abstract
Phosphoinositides play important roles in Golgi traffic and structural integrity. Specific lipid kinases and phosphatases associate with the Golgi complex and regulate the multiplicity of trafficking routes from this organelle. Work in different model systems showed that the basic elements that regulate lipid signaling at the Golgi are conserved from yeast to humans. Many of the enzymes involved in Golgi phosphoinositide metabolism are essential for viability or cause severe human disease when malfunctioning. Phosphoinositide effectors at the Golgi control both non-vesicular transfer of lipids and sorting of secretory and membrane proteins. In addition, Golgi phosphoinositides were recently implicated in the metabolic and cell growth-dependent regulation of the secretory pathway.
Collapse
|
16
|
Hirst J, Sahlender DA, Choma M, Sinka R, Harbour ME, Parkinson M, Robinson MS. Spatial and Functional Relationship of GGAs and AP-1 inDrosophilaand HeLa Cells. Traffic 2009; 10:1696-710. [DOI: 10.1111/j.1600-0854.2009.00983.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|