1
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
2
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
3
|
Abstract
The [Het-s] prion of the fungus Podospora anserina is a well-studied model system to elucidate the action of prions and beyond. The [Het-s] prion works as an activation trigger of a cell death execution protein termed HET-S. Amyloid transconformation of the prion-forming region of HET-S induces activation of its pore-forming cell death execution HeLo domain. The prion motif functions in a signal transduction process by which a nucleotide-binding oligomerization domain (NOD)-like receptor termed NWD2 controls the HET-S cell death effector. This prion motif thus corresponds to a functional amyloid motif, allowing a conformational crosstalk between homologous motif domains in signal transduction processes that appears to be widespread from the fungal to the mammalian animal kingdoms. This review aims to establish a structure-activity relationship of the HET-S/s prion system and sets it in the context of its wider biological significance.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire UMR 5095, CNRS - Université de Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
4
|
Espargaró A, Busquets MA, Estelrich J, Sabate R. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion. Front Mol Neurosci 2016; 9:29. [PMID: 27147962 PMCID: PMC4840800 DOI: 10.3389/fnmol.2016.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer’s and Parkinson’s diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a “prion-like” manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity.
Collapse
Affiliation(s)
- Alba Espargaró
- Faculty of Pharmacy, Laboratory of Conformational Diseases, Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, University of Barcelona Barcelona, Spain
| | - Maria Antònia Busquets
- Faculty of Pharmacy, Laboratory of Conformational Diseases, Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, University of Barcelona Barcelona, Spain
| | - Joan Estelrich
- Faculty of Pharmacy, Laboratory of Conformational Diseases, Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, University of Barcelona Barcelona, Spain
| | - Raimon Sabate
- Faculty of Pharmacy, Laboratory of Conformational Diseases, Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, University of Barcelona Barcelona, Spain
| |
Collapse
|
5
|
Stephan J, Fioriti L, Lamba N, Colnaghi L, Karl K, Derkatch I, Kandel E. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Rep 2015; 11:1772-85. [DOI: 10.1016/j.celrep.2015.04.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
|
6
|
Could α-synuclein amyloid-like aggregates trigger a prionic neuronal invasion? BIOMED RESEARCH INTERNATIONAL 2015; 2015:172018. [PMID: 25866763 PMCID: PMC4383319 DOI: 10.1155/2015/172018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease primarily affecting voluntary and controlled movement, is characterized by abnormal accumulations of α-synuclein (α-syn) in intraneuronal Lewy bodies. In the last years, the increased number of evidences from both the in vitro and in vivo studies has shown the ability of α-syn to misfold in amyloid conformations and to spread via neuron-to-neuron transmission, suggesting a prion-like behaviour. However, in contrast to prion protein (PrP), α-syn transmission is far from neuronal invasion. The high neuronal toxicity of both mature fibres and oligomeric species, as well as the intracellular localization of the protein and the difficulty to be secreted, could be key factors impeding the prion ability of α-syn aggregates.
Collapse
|
7
|
Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabaté R, Loquet A, Saupe SJ. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 2015; 13:e1002059. [PMID: 25671553 PMCID: PMC4344463 DOI: 10.1371/journal.pbio.1002059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023] Open
Abstract
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. The fungus Podospora anserina uses a prion amyloid fold as a signal transduction device between a Nod-like receptor and a downstream cell death execution protein. Although amyloids are best known as protein aggregates that are responsible for fatal neurodegenerative diseases, amyloid structures can also fulfill functional roles in cells. In particular, the controlled formation of amyloid structures appears to be involved in different signaling processes in the context of programmed cell death and host defense. The [Het-s] prion of the filamentous fungus Podospora anserina is a model system in which the 3-D structure of the prion form has been solved. The [Het-s] prion works as an activation switch for a second protein termed HET-S. HET-S is a pore-forming protein that is activated when the [Het-s] prion causes its C-terminal domain to adopt an amyloid-like fold. The protein encoded by the gene adjacent to het-S is a Nod-like receptor (NLR) called NWD2. NLRs are immune receptors that control host defense and cell death processes in plants, animals, and fungi. We show that NWD2 can template the formation of the [Het-s] prion fold in a ligand-controlled manner. NWD2 has an N-terminal motif homologous to the HET-S/s prion-forming region; we find that this region is both necessary and sufficient for its prion-inducing activity, and our functional and structural approaches reveal that the N-terminal region of NWD2 adopts a fold closely related to that of the HET-S/s prion. This study illustrates how the controlled formation of a prion amyloid fold can be used in a signaling process whereby a Nod-like receptor protein activates a downstream cell death execution domain.
Collapse
Affiliation(s)
- Asen Daskalov
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Raimon Sabaté
- Institut de Nanociència i nanotecnologia, Departament Fisicoquímica, Universitat de Barcelona, Joan XXIII s/n, Barcelona, Spain
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Sven J. Saupe
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
8
|
Daskalov A, Gantner M, Wälti MA, Schmidlin T, Chi CN, Wasmer C, Schütz A, Ceschin J, Clavé C, Cescau S, Meier B, Riek R, Saupe SJ. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability. PLoS Pathog 2014; 10:e1004158. [PMID: 24945274 PMCID: PMC4055769 DOI: 10.1371/journal.ppat.1004158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/15/2014] [Indexed: 01/12/2023] Open
Abstract
The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific β-solenoid fold with two rungs of β-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-β core, an observation that might be relevant to other amyloid models.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et de Génétique Cellulaire, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique Université de Bordeaux, Bordeaux, France
| | - Matthias Gantner
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Marielle Aulikki Wälti
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Thierry Schmidlin
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Celestine N. Chi
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Christian Wasmer
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Anne Schütz
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Johanna Ceschin
- Institut de Biochimie et de Génétique Cellulaire, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique Université de Bordeaux, Bordeaux, France
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaire, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique Université de Bordeaux, Bordeaux, France
| | - Sandra Cescau
- Institut de Biochimie et de Génétique Cellulaire, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique Université de Bordeaux, Bordeaux, France
| | - Beat Meier
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique Université de Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Abstract
The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.
Collapse
Affiliation(s)
- Raimon Sabate
- Conformational Diseases Group; Department of Physical Chemistry; Faculty of Pharmacy; University of Barcelona (UB); Barcelona, Spain; Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB); Barcelona, Spain
| |
Collapse
|
10
|
|
11
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
12
|
Benkemoun L, Ness F, Sabaté R, Ceschin J, Breton A, Clavé C, Saupe SJ. Two structurally similar fungal prions efficiently cross-seed in vivo but form distinct polymers when coexpressed. Mol Microbiol 2011; 82:1392-405. [PMID: 22050595 DOI: 10.1111/j.1365-2958.2011.07893.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HET-s is a prion protein of the filamentous fungus Podospora anserina. An orthologue of this protein, called FgHET-s has been identified in Fusarium graminearum. The region of the FgHET-s protein corresponding to the prion forming domain of HET-s, forms amyloid fibrils in vitro. These fibrils seed HET-s(218-289) fibril formation in vitro and vice versa. The amyloid fold of HET-s(218-289) and FgHET-s(218-289) are remarkably similar although they share only 38% identity. The present work corresponds to the functional characterization of the FgHET-s(218-289) region as a prion forming domain in vivo. We show that FgHET-s(218-289) is capable of prion propagation in P. anserina and is able to substitute for the HET-s PFD in the full-length HET-s protein. In accordance with the in vitro cross-seeding experiments, we detect no species barrier between P. anserina and F. graminearum PFDs. We use the yeast Saccharomyces cerevisiae as a host to compare the prion performances of the two orthologous PFDs. We find that FgHET-s(218-289) leads to higher spontaneous prion formation rates and mitotic prion stability than HET-s(218-289). Then we analysed the outcome of HET-s(218-289)/FgHET-s(218-289) coexpression. In spite of the cross-seeding ability of HET-s(218-289) and FgHET-s(218-289), in vivo, homotypic polymerization is favoured over mixed fibril formation.
Collapse
Affiliation(s)
- Laura Benkemoun
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS - Université de Bordeaux 2, 1 rue Camille St Saens, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 2011; 32:139-53. [PMID: 22037764 DOI: 10.1128/mcb.06125-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are associated with accumulation of the amyloid form of the prion protein, but the mechanisms of toxicity are unknown. Amyloid toxicity is also associated with fungal prions. In Podospora anserina, the simultaneous presence of [Het-s] prion and its allelic protein HET-S causes cell death in a self-/nonself-discrimination process. Here, using the prion form of a fragment of HET-s ([PrD(157)(+)]), we show that [Het-s]-HET-S toxicity can be faithfully recapitulated in yeast. Overexpression of Hsp40 chaperone, Sis1, rescues this toxicity by curing cells of [PrD(157)(+)]. We find no evidence for toxic [PrD(157)(+)] conformers in the presence of HET-S. Instead, [PrD(157)(+)] appears to seed HET-S to accumulate at the cell periphery and to form aggregates distinct from visible [PrD(157)(+)] aggregates. Furthermore, HET-S mutants that cause HET-S to be sequestered into [PrD(157)(+)] prion aggregates are not toxic. The localization of HET-S at the cell periphery and its association with cell death was also observed in the native host Podospora anserina. Thus, upon interaction with [Het-s], HET-S localizes to the cell periphery, and this relocalization, rather than the formation of mixed HET-s/HET-S aggregates, is associated with toxicity.
Collapse
|
14
|
Saupe SJ. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 2011; 22:460-8. [PMID: 21334447 DOI: 10.1016/j.semcdb.2011.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered β-solenoid fold with a triangular hydrophobic core. The ability to form this β-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the β-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.
Collapse
Affiliation(s)
- Sven J Saupe
- Non-self recognition in fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux 2, 1 rue Camille St Saens, Bordeaux cedex, France.
| |
Collapse
|
15
|
Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2011; 108:3252-7. [PMID: 21300906 DOI: 10.1073/pnas.1011342108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HET-s is a prion protein of the fungus Podospora anserina which, in the prion state, is active in a self/nonself recognition process called heterokaryon incompatibility. Its prionogenic properties reside in the C-terminal "prion domain." The HET-s prion domain polymerizes in vitro into amyloid fibrils whose properties depend on the pH of assembly; above pH 3, infectious singlet fibrils are produced, and below pH 3, noninfectious triplet fibrils. To investigate the correlation between structure and infectivity, we performed cryo-EM analyses. Singlet fibrils have a helical pitch of approximately 410 Å and a left-handed twist. Triplet fibrils have three protofibrils whose lateral dimensions (36 × 25 Å) and axial packing (one subunit per 9.4 Å) match those of singlets but differ in their supercoiling. At 8.5-Å resolution, the cross-section of the singlet fibril reconstruction is largely consistent with that of a β-solenoid model previously determined by solid-state NMR. Reconstructions of the triplet fibrils show three protofibrils coiling around a common axis and packed less tightly at pH 3 than at pH 2, eventually peeling off. Taken together with the earlier observation that fragmentation of triplet fibrils by sonication does not increase infectivity, these observations suggest a novel mechanism for self-propagation, whereby daughter fibrils nucleate on the lateral surface of singlet fibrils. In triplets, this surface is occluded, blocking nucleation and thereby explaining their lack of infectivity.
Collapse
|
16
|
Tuite MF, Marchante R, Kushnirov V. Fungal prions: structure, function and propagation. Top Curr Chem (Cham) 2011; 305:257-98. [PMID: 21717344 DOI: 10.1007/128_2011_172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prions are not uniquely associated with rare fatal neurodegenerative diseases in the animal kingdom; prions are also found in fungi and in particular the yeast Saccharomyces cerevisiae. As with animal prions, fungal prions are proteins able to exist in one or more self-propagating alternative conformations, but show little primary sequence relationship with the mammalian prion protein PrP. Rather, fungal prions represent a relatively diverse collection of proteins that participate in key cellular processes such as transcription and translation. Upon switching to their prion form, these proteins can generate stable, sometimes beneficial, changes in the host cell phenotype. Much has already been learnt about prion structure, and propagation and de novo generation of the prion state through studies in yeast and these findings are reviewed here.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | | | |
Collapse
|
17
|
Grimminger-Marquardt V, Lashuel HA. Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010; 93:252-76. [PMID: 19768774 DOI: 10.1002/bip.21301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and alpha-synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo.
Collapse
Affiliation(s)
- Valerie Grimminger-Marquardt
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), FSV-BMI AI 2137.1, Station 15, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
18
|
Smith AM, Scheibel T. Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Abstract
High-ordered aggregates (amyloids) may disrupt cell functions, cause toxicity at certain conditions and provide a basis for self-perpetuated, protein-based infectious heritable agents (prions). Heat shock proteins acting as molecular chaperones counteract protein aggregation and influence amyloid propagation. The yeast Hsp104/Hsp70/Hsp40 chaperone complex plays a crucial role in interactions with both ordered and unordered aggregates. The main focus of this review will be on the Hsp104 chaperone, a molecular "disaggregase".
Collapse
Affiliation(s)
- Nina V Romanova
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
20
|
Wickner RB, Shewmaker F, Kryndushkin D, Edskes HK. Protein inheritance (prions) based on parallel in-register beta-sheet amyloid structures. Bioessays 2008; 30:955-64. [PMID: 18798523 DOI: 10.1002/bies.20821] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most prions (infectious proteins) are self-propagating amyloids (filamentous protein multimers), and have been found in both mammals and fungal species. The prions [URE3] and [PSI+] of yeast are disease agents of Saccharomyces cerevisiae while [Het-s] of Podospora anserina may serve a normal cellular function. The parallel in-register beta-sheet structure shown by prion amyloids makes possible a templating action at the end of filaments which explains the faithful transmission of variant differences in these molecules. This property of self-reproduction, in turn, allows these proteins to act as de facto genes, encoding heritable information.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | | | | | |
Collapse
|
21
|
Insights into the mechanism of prion propagation. Curr Opin Struct Biol 2008; 18:52-9. [DOI: 10.1016/j.sbi.2007.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 11/23/2022]
|