1
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
2
|
Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R. The SNAP-25 linker supports fusion intermediates by local lipid interactions. eLife 2019; 8:41720. [PMID: 30883328 PMCID: PMC6422494 DOI: 10.7554/elife.41720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated “linker” domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.
Collapse
Affiliation(s)
- Ahmed Shaaban
- ZHMB, Saarland University, Homburg, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ali Harb
- ZHMB, Saarland University, Homburg, Germany
| | - Ali H Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ute Becherer
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ralf Mohrmann
- ZHMB, Saarland University, Homburg, Germany.,Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Science, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Novel Applications of OnabotulinumtoxinA in Lower Urinary Tract Dysfunction. Toxins (Basel) 2018; 10:toxins10070260. [PMID: 29949878 PMCID: PMC6071213 DOI: 10.3390/toxins10070260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
OnabotulinumtoxinA (BoNT-A) was first used to treat neurogenic lower urinary tract dysfunction (LUTD) 30 years ago. Recently, application of BoNT-A in LUTD have become more common since the approval of intravesical BoNT-A injection for patients with both overactive bladders (OAB) and neurogenic detrusor overactivity (NDO) by regulatory agencies in many countries. Although unlicensed, BoNT-A has been recommended to treat patients with interstitial cystitis/bladder pain syndrome (IC/BPS) under different guidelines. BoNT-A delivery with liposome-encapsulation and gelation hydrogel intravesical instillation provided a potentially less invasive and more convenient form of application for patients with OAB or IC/BPS. BoNT-A injections into the urethral sphincter for spinal cord injury patients with detrusor-sphincter dyssynergia have been used for a long time. New evidence revealed that it could also be applied to patients with non-neurogenic dysfunctional voiding. Previous studies and meta-analyses suggest that BoNT-A injections for patients with benign prostate hyperplasia do not have a better therapeutic effect than placebo. However, new randomized and placebo-controlled trials revealed intraprostatic BoNT-A injection is superior to placebo in specific patients. A recent trial also showed intraprostatic BoNT-A injection could significantly reduce pain in patients with chronic prostatitis. Both careful selection of patients and prudent use of urodynamic evaluation results to confirm diagnoses are essential for successful outcomes of BoNT-A treatment for LUTD.
Collapse
|
4
|
Jhang JF, Kuo HC. Botulinum Toxin A and Lower Urinary Tract Dysfunction: Pathophysiology and Mechanisms of Action. Toxins (Basel) 2016; 8:120. [PMID: 27110822 PMCID: PMC4848644 DOI: 10.3390/toxins8040120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/24/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
The use of onabotulinumtoxinA (BoNT-A) for the treatment of lower urinary tract diseases (LUTD) has increased markedly in recent years. The indications for BoNT-A treatment of LUTD now include neurogenic or idiopathic detrusor overactivity, interstitial cystitis/bladder pain syndrome and voiding dysfunction. The mechanisms of BoNT-A action on LUTDs affect many different aspects. Traditionally, the effects of BoNT-A were believed to be attributable to inhibition of acetylcholine release from the presynaptic efferent nerves at the neuromuscular junctions in the detrusor or urethral sphincter. BoNT-A injection in the bladder also regulated sensory nerve function by blocking neurotransmitter release and reducing receptor expression in the urothelium. In addition, recent studies revealed an anti-inflammatory effect for BoNT-A. Substance P and nerve growth factor in the urine and bladder tissue decreased after BoNT-A injection. Mast cell activation in the bladder also decreased. BoNT-A-induced improvement of urothelium function plays an important mitigating role in bladder dysfunction. Vascular endothelial growth factor expression in urothelium decreased after BoNT-A injection, as did apoptosis. Studies also revealed increased apoptosis in the prostate after BoNT-A injection. Although BoNT-A injection has been widely used to treat different LUTDs refractory to conventional treatment, currently, onabotulinumtoxinA has been proven effective only on urinary incontinence due to IDO and NDO in several large-scale clinical trials. The effects of onabotulinumtoxinA on other LUTDs such as interstitial cystitis, benign prostatic hyperplasia, dysfunctional voiding or detrusor sphincter dyssynergia have not been well demonstrated.
Collapse
Affiliation(s)
- Jia-Fong Jhang
- Department of Urology, Buddhist Tzu Chi General Hospital, Tzu Chi University, 707 Chung-Yang Road, Section 3, Hualien 970, Taiwan.
| | - Hann-Chorng Kuo
- Department of Urology, Buddhist Tzu Chi General Hospital, Tzu Chi University, 707 Chung-Yang Road, Section 3, Hualien 970, Taiwan.
| |
Collapse
|
5
|
Flanagan JJ, Mukherjee I, Barlowe C. Examination of Sec22 Homodimer Formation and Role in SNARE-dependent Membrane Fusion. J Biol Chem 2015; 290:10657-66. [PMID: 25750128 DOI: 10.1074/jbc.m114.626911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.
Collapse
Affiliation(s)
- John J Flanagan
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Indrani Mukherjee
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Charles Barlowe
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
6
|
Membrane-proximal tryptophans of synaptobrevin II stabilize priming of secretory vesicles. J Neurosci 2013; 32:15983-97. [PMID: 23136435 DOI: 10.1523/jneurosci.6282-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trans-soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes formed between the SNARE motifs of synaptobrevin II, SNAP-25, and syntaxin play an essential role in Ca(2+)-regulated exocytosis. Apart from the well studied interactions of the SNARE domains, little is known about the functional relevance of other evolutionarily conserved structures in the SNARE proteins. Here, we show that substitution of two highly conserved tryptophan residues within the juxtamembrane domain (JMD) of the vesicular SNARE Synaptobrevin II (SybII) profoundly impairs priming of granules in mouse chromaffin cells without altering catecholamine release from single vesicles. Using molecular dynamic simulations of membrane-embedded SybII, we show that Trp residues of the JMD influence the electrostatic surface potential by controlling the position of neighboring lysine and arginine residues at the membrane-water interface. Our observations indicate a decisive role of the tryptophan moiety of SybII in keeping the vesicles in the release-ready state and support a model wherein tryptophan-mediated protein-lipid interactions assist in bridging the apposing membranes before fusion.
Collapse
|
7
|
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc Natl Acad Sci U S A 2011; 108:14318-23. [PMID: 21844343 DOI: 10.1073/pnas.1101818108] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission.
Collapse
|
8
|
SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci U S A 2011; 108:13540-5. [PMID: 21808019 DOI: 10.1073/pnas.1107067108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransmission depends on the exo-endocytosis of synaptic vesicles at active zones. Synaptobrevin 2 [also known as vesicle-associated membrane protein 2 (VAMP2)], the most abundant synaptic vesicle protein and a major soluble NSF attachment protein receptor (SNARE) component, is required for fast calcium-triggered synaptic vesicle fusion. In contrast to the extensive knowledge about the mechanism of SNARE-mediated exocytosis, little is known about the endocytic sorting of synaptobrevin 2. Here we show that synaptobrevin 2 sorting involves determinants within its SNARE motif that are recognized by the ANTH domains of the endocytic adaptors AP180 and clathrin assembly lymphoid myeloid leukemia (CALM). Depletion of CALM or AP180 causes selective surface accumulation of synaptobrevin 2 but not vGLUT1 at the neuronal surface. Endocytic sorting of synaptobrevin 2 is mediated by direct interaction of the ANTH domain of the related endocytic adaptors CALM and AP180 with the N-terminal half of the SNARE motif centered around M46, as evidenced by NMR spectroscopy analysis and site-directed mutagenesis. Our data unravel a unique mechanism of SNARE motif-dependent endocytic sorting and identify the ANTH domain proteins AP180 and CALM as cargo-specific adaptors for synaptobrevin endocytosis. Defective SNARE endocytosis may also underlie the association of CALM and AP180 with neurodevelopmental and cognitive defects or neurodegenerative disorders.
Collapse
|
9
|
Fdez E, Martínez-Salvador M, Beard M, Woodman P, Hilfiker S. Transmembrane-domain determinants for SNARE-mediated membrane fusion. J Cell Sci 2010; 123:2473-80. [PMID: 20571052 DOI: 10.1242/jcs.061325] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurosecretion involves fusion of vesicles with the plasma membrane. Such membrane fusion is mediated by the SNARE complex, which is composed of the vesicle-associated protein synaptobrevin (VAMP2), and the plasma membrane proteins syntaxin-1A and SNAP-25. Although clearly important at the point of membrane fusion, the precise structural and functional requirements for the transmembrane domains (TMDs) of SNAREs in bringing about neurosecretion remain largely unknown. Here, we used a bimolecular fluorescence complementation (BiFC) approach to study SNARE protein interactions involving TMDs in vivo. VAMP2 molecules were found to dimerise through their TMDs in intact cells. Dimerisation was abolished when replacing a glycine residue in the centre of the TMD with residues of increasing molecular volume. However, such mutations still were fully competent in bringing about membrane-fusion events, suggesting that dimerisation of the VAMP2 TMDs does not have an important functional role. By contrast, a series of deletion or insertion mutants in the C-terminal half of the TMD were largely deficient in supporting neurosecretion, whereas mutations in the N-terminal half did not display severe secretory deficits. Thus, structural length requirements, largely confined to the C-terminal half of the VAMP2 TMD, seem to be essential for SNARE-mediated membrane-fusion events in cells.
Collapse
Affiliation(s)
- Elena Fdez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Avda del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | |
Collapse
|
10
|
Di Giovanni J, Boudkkazi S, Mochida S, Bialowas A, Samari N, Lévêque C, Youssouf F, Brechet A, Iborra C, Maulet Y, Moutot N, Debanne D, Seagar M, El Far O. V-ATPase Membrane Sector Associates with Synaptobrevin to Modulate Neurotransmitter Release. Neuron 2010; 67:268-79. [DOI: 10.1016/j.neuron.2010.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
11
|
Di Giovanni J, Iborra C, Maulet Y, Lévêque C, El Far O, Seagar M. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem 2010; 285:23665-75. [PMID: 20519509 DOI: 10.1074/jbc.m109.096073] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.
Collapse
|
12
|
Rubio de la Torre E, Luzón-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I, Hilfiker S. Combined kinase inhibition modulates parkin inactivation. Hum Mol Genet 2008; 18:809-23. [PMID: 19050041 PMCID: PMC2640208 DOI: 10.1093/hmg/ddn407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutations in the parkin gene cause autosomal-recessive, juvenile-onset parkinsonism, and parkin dysfunction may also play a role in the pathogenesis of sporadic Parkinson disease (PD). Although its precise function remains largely unknown, parkin seems to play a neuroprotective role. Several studies indicate that changes in parkin solubility induced by post-translational modifications, such as S-nitrosylation or dopamine modification, comprise one mechanism of parkin inactivation associated with disease. Protein phosphorylation events have recently been linked to the molecular mechanism(s) underlying PD, but the role of this post-translational modification for parkin function has remained unclear. Here we report that compound phosphorylation of parkin by both casein kinase I and cyclin-dependent kinase 5 (cdk5) decreases parkin solubility, leading to its aggregation and inactivation. Combined kinase inhibition partially reverses the aggregative properties of several pathogenic point mutants in cultured cells. Enhanced parkin phosphorylation is detected in distinct brain areas of individuals with sporadic PD and correlates with increases in the levels of p25, the activator of cdk5. These findings indicate that casein kinase I and cdk5 may represent novel combinatorial therapeutic targets for treating PD.
Collapse
Affiliation(s)
- Elena Rubio de la Torre
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Luzón-Toro B, Geerlings A, Hilfiker S. Hydroxytyrosol increases norepinephrine transporter function in pheochromocytoma cells. Nucl Med Biol 2008; 35:801-4. [DOI: 10.1016/j.nucmedbio.2008.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/24/2008] [Indexed: 11/30/2022]
|