1
|
Adhikary K, Kapoor S, Kotak S. A cortical pool of LIN-5 (NuMA) controls cytokinetic furrow formation and cytokinesis completion. J Cell Biol 2025; 224:e202406059. [PMID: 40304693 PMCID: PMC12042773 DOI: 10.1083/jcb.202406059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
In animal cells, cleavage furrow formation is controlled by localized activation of the GTPase RhoA at the equatorial membrane using cues transmitted from the spindle. Here, we explore the function of LIN-5, a well-studied protein known for its role in aster separation and spindle positioning in cleavage furrow formation. We show that the cortical pool of LIN-5, recruited by GPR-1/2 and important for cortical force generation, regulates cleavage furrow formation independently of its roles in aster separation and spindle positioning. Instead, our data suggest that enrichment of LIN-5/GPR-1/2 at the polar cortical region is essential to ensure the timely accumulation of contractile ring components-myosin II and Anillin at the equatorial cortex. We additionally define a late cytokinesis role of cortical LIN-5/GPR-1/2 in midbody stabilization and abscission. These results indicate that the cortical LIN-5/GPR-1/2 complex contributes to multiple aspects of cytokinesis independently of its roles in spindle positioning and elongation.
Collapse
Affiliation(s)
- Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D, Mercat B, Rodriguez-Garcia R, Alayan Z, Abdouni A, de Neidhardt G, Costes V, Anjubault M, Bouvrais H, Héligon C, Pécréaux J. Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. PLoS Comput Biol 2024; 20:e1012330. [PMID: 39236069 PMCID: PMC11376571 DOI: 10.1371/journal.pcbi.1012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.
Collapse
Affiliation(s)
- Yann Le Cunff
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Xavier Pinson
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Nina Soler
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Danielle Fairbrass
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Benjamin Mercat
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Zahraa Alayan
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ahmed Abdouni
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Gary de Neidhardt
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Valentin Costes
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Mélodie Anjubault
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Christophe Héligon
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| |
Collapse
|
3
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical and biochemical feedback combine to generate complex contractile oscillations in cytokinesis. Curr Biol 2024; 34:3201-3214.e5. [PMID: 38991614 PMCID: PMC11634113 DOI: 10.1016/j.cub.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Coleman Breen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, Max Planck Institute for the Physics of Complex Systems, and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Florian Jug
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical positive feedback and biochemical negative feedback combine to generate complex contractile oscillations in cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569672. [PMID: 38076901 PMCID: PMC10705528 DOI: 10.1101/2023.12.01.569672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Contractile force generation by the cortical actomyosin cytoskeleton is essential for a multitude of biological processes. The actomyosin cortex behaves as an active material that drives local and large-scale shape changes via cytoskeletal remodeling in response to biochemical cues and feedback loops. Cytokinesis is the essential cell division event during which a cortical actomyosin ring generates contractile force to change cell shape and separate two daughter cells. Our recent work with active gel theory predicts that actomyosin systems under the control of a biochemical oscillator and experiencing mechanical strain will exhibit complex spatiotemporal behavior, but cytokinetic contractility was thought to be kinetically simple. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we used 4-dimensional imaging with unprecedented temporal resolution and discovered sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Quantification of ingression speed oscillations revealed wide ranges of oscillation period and amplitude. In the cytokinetic ring, activity of the master regulator RhoA pulsed with a timescale of approximately 20 seconds, shorter than that reported for any other biological context. Contractility oscillated with 20-second periodicity and with much longer periods. A combination of in vivo and in silico approaches to modify mechanical feedback revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Effective local ring ingression is characterized by slower speed oscillations, likely due to increased local stresses and therefore mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico . We propose that downstream of initiation by pulsed RhoA activity, mechanical positive feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and therefore makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Our work demonstrates that while biochemical feedback loops afford systems responsiveness and robustness, mechanical feedback must also be considered to describe and understand the behaviors of active materials in vivo .
Collapse
|
5
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Hirsch SM, Edwards F, Shirasu-Hiza M, Dumont J, Canman JC. Functional midbody assembly in the absence of a central spindle. J Cell Biol 2022; 221:e202011085. [PMID: 34994802 PMCID: PMC8751756 DOI: 10.1083/jcb.202011085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F-like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2-dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle-independent midbodies appeared to form via contractile ring constriction-driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.
Collapse
Affiliation(s)
- Sophia M. Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Frances Edwards
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Julien Dumont
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
8
|
Ozugergin I, Mastronardi K, Law C, Piekny A. Diverse mechanisms regulate contractile ring assembly for cytokinesis in the two-cell Caenorhabditis elegans embryo. J Cell Sci 2022; 135:jcs258921. [PMID: 35022791 PMCID: PMC10660071 DOI: 10.1242/jcs.258921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis occurs at the end of mitosis as a result of the ingression of a contractile ring that cleaves the daughter cells. The core machinery regulating this crucial process is conserved among metazoans. Multiple pathways control ring assembly, but their contribution in different cell types is not known. We found that in the Caenorhabditis elegans embryo, AB and P1 cells fated to be somatic tissue and germline, respectively, have different cytokinesis kinetics supported by distinct myosin levels and organization. Through perturbation of RhoA or polarity regulators and the generation of tetraploid strains, we found that ring assembly is controlled by multiple fate-dependent factors that include myosin levels, and mechanisms that respond to cell size. Active Ran coordinates ring position with the segregating chromatids in HeLa cells by forming an inverse gradient with importins that control the cortical recruitment of anillin. We found that the Ran pathway regulates anillin in AB cells but functions differently in P1 cells. We propose that ring assembly delays in P1 cells caused by low myosin and Ran signaling coordinate the timing of ring closure with their somatic neighbors. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | | | - Chris Law
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
9
|
Longhini KM, Glotzer M. Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation. eLife 2022; 11:83992. [PMID: 36533896 PMCID: PMC9799973 DOI: 10.7554/elife.83992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In the early Caenorhabditis elegans embryo, cell polarization and cytokinesis are interrelated yet distinct processes. Here, we sought to understand a poorly understood aspect of cleavage furrow positioning. Early C. elegans embryos deficient in the cytokinetic regulator centralspindlin form furrows, due to an inhibitory activity that depends on aster positioning relative to the polar cortices. Here, we show polar relaxation is associated with depletion of cortical ECT-2, a RhoGEF, specifically at the posterior cortex. Asymmetric ECT-2 accumulation requires intact centrosomes, Aurora A (AIR-1), and myosin-dependent cortical flows. Within a localization competent ECT-2 fragment, we identified three putative phospho-acceptor sites in the PH domain of ECT-2 that render ECT-2 responsive to inhibition by AIR-1. During both polarization and cytokinesis, our results suggest that centrosomal AIR-1 breaks symmetry via ECT-2 phosphorylation; this local inhibition of ECT-2 is amplified by myosin-driven flows that generate regional ECT-2 asymmetry. Together, these mechanisms cooperate to induce polarized assembly of cortical myosin, contributing to both embryo polarization and cytokinesis.
Collapse
Affiliation(s)
- Katrina M Longhini
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
10
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
11
|
Michaud A, Swider ZT, Landino J, Leda M, Miller AL, von Dassow G, Goryachev AB, Bement WM. Cortical excitability and cell division. Curr Biol 2021; 31:R553-R559. [PMID: 34033789 PMCID: PMC8358936 DOI: 10.1016/j.cub.2021.02.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells. It has recently become apparent, however, that cortical excitability is involved in the response of the cortex to internal signals from the cell-cycle regulatory machinery and the spindle during cell division. Two overlapping functions have been ascribed to cortical excitability in cell division: control of cell division plane placement, and amplification of the activity of the small GTPase Rho at the equatorial cortex during cytokinesis. Here, we propose that cortical excitability explains several important yet poorly understood features of signaling during cell division. We also consider the potential advantages that arise from the use of cortical excitability as a signaling mechanism to regulate cortical dynamics in cell division.
Collapse
Affiliation(s)
- Ani Michaud
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | - Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, 5264 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, 2.03 C.H. Waddington Building, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, 5264 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, 63466 Boat Basin Road, Charleston, OR 97420, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, 2.03 C.H. Waddington Building, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Center for Quantitative Cell Imaging, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Bouvrais H, Chesneau L, Le Cunff Y, Fairbrass D, Soler N, Pastezeur S, Pécot T, Kervrann C, Pécréaux J. The coordination of spindle-positioning forces during the asymmetric division of the Caenorhabditis elegans zygote. EMBO Rep 2021; 22:e50770. [PMID: 33900015 DOI: 10.15252/embr.202050770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
In Caenorhabditis elegans zygote, astral microtubules generate forces essential to position the mitotic spindle, by pushing against and pulling from the cortex. Measuring microtubule dynamics there, we revealed the presence of two populations, corresponding to pulling and pushing events. It offers a unique opportunity to study, under physiological conditions, the variations of both spindle-positioning forces along space and time. We propose a threefold control of pulling force, by polarity, spindle position and mitotic progression. We showed that the sole anteroposterior asymmetry in dynein on-rate, encoding pulling force imbalance, is sufficient to cause posterior spindle displacement. The positional regulation, reflecting the number of microtubule contacts in the posterior-most region, reinforces this imbalance only in late anaphase. Furthermore, we exhibited the first direct proof that dynein processivity increases along mitosis. It reflects the temporal control of pulling forces, which strengthens at anaphase onset following mitotic progression and independently from chromatid separation. In contrast, the pushing force remains constant and symmetric and contributes to maintaining the spindle at the cell centre during metaphase.
Collapse
Affiliation(s)
| | | | - Yann Le Cunff
- CNRS, IGDR - UMR 6290, University of Rennes, Rennes, France
| | | | - Nina Soler
- CNRS, IGDR - UMR 6290, University of Rennes, Rennes, France
| | | | - Thierry Pécot
- INRIA, Centre Rennes - Bretagne Atlantique, Rennes, France
| | | | | |
Collapse
|
13
|
Beaudet D, Pham N, Skaik N, Piekny A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol Biol Cell 2020; 31:1124-1139. [PMID: 32238082 PMCID: PMC7353161 DOI: 10.1091/mbc.e20-01-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that cleaves a cell into two daughters. This process is tightly controlled to avoid aneuploidy, and we previously showed that active Ran coordinates ring positioning with chromatin. Active Ran is high around chromatin, and forms an inverse gradient to cargo-bound importins. We found that the ring component anillin contains a nuclear localization signal (NLS) that binds to importin and is required for its function during cytokinesis. Here we reveal the mechanism whereby importin binding favors a conformation required for anillin's recruitment to the equatorial cortex. Active RhoA binds to the RhoA-binding domain causing an increase in accessibility of the nearby C2 domain containing the NLS. Importin binding subsequently stabilizes a conformation that favors interactions for cortical recruitment. In addition to revealing a novel mechanism for the importin-mediated regulation of a cortical protein, we also show how importin binding positively regulates protein function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0G4
| | - Nhat Pham
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Noha Skaik
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| |
Collapse
|
14
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
15
|
Pacquelet A, Jousseaume M, Etienne J, Michaux G. Simultaneous Regulation of Cytokinetic Furrow and Nucleus Positions by Cortical Tension Contributes to Proper DNA Segregation during Late Mitosis. Curr Biol 2019; 29:3766-3777.e4. [PMID: 31679940 DOI: 10.1016/j.cub.2019.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
Coordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here, we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning during the first division of C. elegans embryos. Correction of DNA segregation defects due to an abnormally anterior cytokinetic furrow relies on the concomitant and opposite displacements of the furrow and of the anterior nucleus toward the posterior and anterior poles of the embryo, respectively. It also coincides with cortical blebbing and an anteriorly directed cytoplasmic flow. Although microtubules contribute to nuclear displacement, relaxation of an excessive tension at the anterior cortex plays a central role in the correction process and simultaneously regulates cytoplasmic flow as well as nuclear and furrow displacements. This work thus reveals the existence of a so-far uncharacterized correction mechanism, which is critical to correct DNA segregation defects due to cytokinetic furrow mispositioning.
Collapse
Affiliation(s)
- Anne Pacquelet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France.
| | - Matthieu Jousseaume
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - Jocelyn Etienne
- Univ Grenoble Alpes, CNRS, LIPhy, 140 Avenue de la Physique, 38402 Saint Martin d'Hères, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
16
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
17
|
Bouvrais H, Chesneau L, Pastezeur S, Fairbrass D, Delattre M, Pécréaux J. Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position. Biophys J 2018; 115:2189-2205. [PMID: 30447992 PMCID: PMC6289040 DOI: 10.1016/j.bpj.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022] Open
Abstract
During asymmetric division of the Caenorhabditis elegans zygote, to properly distribute cell fate determinants, the mitotic spindle is asymmetrically localized by a combination of centering and cortical-pulling microtubule-mediated forces, the dynamics of the latter being regulated by mitotic progression. Here, we show a, to our knowledge, novel and additional regulation of these forces by spindle position itself. For that, we observed the onset of transverse spindle oscillations, which reflects the burst of anaphase pulling forces. After delaying anaphase onset, we found that the position at which the spindle starts to oscillate was unchanged compared to control embryos and uncorrelated to anaphase onset. In mapping the cortical microtubule dynamics, we measured a steep increase in microtubule contact density after the posterior centrosome reached the critical position of 70% of embryo length, strongly suggesting the presence of a positional switch for spindle oscillations. Expanding a previous model based on a force-generator temporal control, we implemented this positional switch and observed that the large increase in microtubule density accounted for the pulling force burst. Thus, we propose that the spindle position influences the cortical availability of microtubules on which the active force generators, controlled by cell cycle progression, can pull. Importantly, we found that this positional control relies on the polarity-dependent LET-99 cortical band, the boundary of which could be probed by microtubules. This dual positional and temporal control well accounted for our observation that the oscillation onset position resists changes in cellular geometry and moderate variations in the active force generator number. Finally, our model suggests that spindle position at mitosis end is more sensitive to the polarity factor LET-99, which restricts the region of active force generators to a posterior-most region, than to microtubule number or force generator number/activity. Overall, we show that robustness in spindle positioning originates in cell mechanics rather than biochemical networks.
Collapse
Affiliation(s)
| | | | | | | | - Marie Delattre
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | | |
Collapse
|
18
|
Davies T, Kim HX, Romano Spica N, Lesea-Pringle BJ, Dumont J, Shirasu-Hiza M, Canman JC. Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. eLife 2018; 7:36204. [PMID: 30028292 PMCID: PMC6054530 DOI: 10.7554/elife.36204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cytokinesis, the physical division of one cell into two, is powered by constriction of an actomyosin contractile ring. It has long been assumed that all animal cells divide by a similar molecular mechanism, but growing evidence suggests that cytokinetic regulation in individual cell types has more variation than previously realized. In the four-cell Caenorhabditis elegans embryo, each blastomere has a distinct cell fate, specified by conserved pathways. Using fast-acting temperature-sensitive mutants and acute drug treatment, we identified cell-type-specific variation in the cytokinetic requirement for a robust forminCYK-1-dependent filamentous-actin (F-actin) cytoskeleton. In one cell (P2), this cytokinetic variation is cell-intrinsically regulated, whereas in another cell (EMS) this variation is cell-extrinsically regulated, dependent on both SrcSRC-1 signaling and direct contact with its neighbor cell, P2. Thus, both cell-intrinsic and -extrinsic mechanisms control cytokinetic variation in individual cell types and can protect against division failure when the contractile ring is weakened. The successful division of one cell into two is essential for all organisms to live, grow and reproduce. For an animal cell, the nucleus – the compartment containing the genetic material – must divide before the surrounding material. The rest of the cell, called the cytoplasm, physically separates later in a process known as cytokinesis. Cytokinesis in animal cells is driven by the formation of a ring in the middle of the dividing cell. The ring is composed of myosin motor proteins and filaments made of a protein called actin. The movements of the motor proteins along the filaments cause the ring to contract and tighten. This pulls the cell membrane inward and physically pinches the cell into two. For a long time, the mechanism of cytokinesis was assumed to be same across different types of animal cell, but later evidence suggested otherwise. For example, in liver, heat and bone cells, cytokinesis naturally fails during development to create cells with two or more nuclei. If a similar ‘failure’ happened in other cell types, it could lead to diseases such as cancers or blood disorders. This raised the question: what are the molecular mechanisms that allow cytokinesis to happen differently in different cell types? Davies et al. investigated this question using embryos of the worm Caenorhabditis elegans at a stage in their development when they consist of just four cells. The proteins forming the contractile ring in this worm are the same as those in humans. However, in the worm, the contractile ring can easily be damaged using chemical inhibitors or by mutating the genes that encode its proteins. Davies et al. show that when the contractile ring was damaged, two of the four cells in the worm embryo still divided successfully. This result indicates the existence of new mechanisms to divide the cytoplasm that allow division even with a weak contractile ring. In a further experiment, the embryos were dissected to isolate each of the four cells. Davies et al. saw that one of the two dividing cells could still divide on its own, while the other cell could not. This shows that this new method of cytokinesis is regulated both by factors inherent to the dividing cell and by external signals from other cells. Moreover, one of these extrinsic signals was found to be a signaling protein that had previously been implicated in human cancers. Future work will determine if these variations in cytokinesis between the different cell types found in the worm apply to humans too; and, more importantly from a therapeutic standpoint, if these new mechanisms exist in human cancers.
Collapse
Affiliation(s)
- Tim Davies
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Han X Kim
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Natalia Romano Spica
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Benjamin J Lesea-Pringle
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| |
Collapse
|
19
|
Mangal S, Sacher J, Kim T, Osório DS, Motegi F, Carvalho AX, Oegema K, Zanin E. TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J Cell Biol 2018; 217:837-848. [PMID: 29311228 PMCID: PMC5839786 DOI: 10.1083/jcb.201706021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Sriyash Mangal
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Jennifer Sacher
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Taekyung Kim
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Daniel Sampaio Osório
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Fumio Motegi
- Research Link, National University of Singapore, Singapore
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA
| | - Esther Zanin
- Center for Integrated Protein Science, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Beaudet D, Akhshi T, Phillipp J, Law C, Piekny A. Active Ran regulates anillin function during cytokinesis. Mol Biol Cell 2017; 28:3517-3531. [PMID: 28931593 PMCID: PMC5683762 DOI: 10.1091/mbc.e17-04-0253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/11/2022] Open
Abstract
We describe a novel mechanism by which active Ran regulates anillin during cytokinesis. Anillin is highly conserved and coordinates RhoA, actomyosin, microtubules, and the membrane for cytokinesis in mammalian cells. This study implicates Ran-GTP in influencing cortical contractility during anaphase by regulating anillin function. Cytokinesis cleaves a cell into two daughters at the end of mitosis, and must be spatially coordinated with chromosome segregation to prevent aneuploidy. The dogma is that the mitotic spindle governs the assembly and constriction of an actomyosin ring. Here, we reveal a function for active Ran in spatially restricting the ring. Our model is that during anaphase, “free” importins, whose gradient inversely correlates with active Ran and chromatin position, function as a molecular ruler for the recruitment and localization of anillin, a contractile protein and a crucial regulator of cytokinesis. We found that decreasing Ran-GTP levels or tethering active Ran to the equatorial membrane affects anillin’s localization and causes cytokinesis phenotypes. Anillin contains a conserved nuclear localization signal (NLS) at its C-terminus that binds to importin-β and is required for cortical polarity and cytokinesis. Mutating the NLS decreases anillin’s cortical affinity, causing it to be more dominantly regulated by microtubules. Anillin contains a RhoA-GTP binding domain, which autoinhibits the NLS and the neighboring microtubule-binding domain, and RhoA-GTP binding may relieve this inhibition during mitosis. Retention of the C-terminal NLS in anillin homologues suggests that this is a conserved mechanism for controlling anillin function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Tara Akhshi
- Program in Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julia Phillipp
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Christopher Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Program in Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
21
|
Price KL, Rose LS. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring. Mol Biol Cell 2017; 28:2360-2373. [PMID: 28701343 PMCID: PMC5576900 DOI: 10.1091/mbc.e16-12-0874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
LET-99 is required for furrowing during cytokinesis in both symmetrically and asymmetrically dividing cells. This function is distinct from the role of LET-99 in spindle positioning with Gα signaling. LET-99 is localized to the furrow, where it acts to promote myosin enrichment. The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells.
Collapse
Affiliation(s)
- Kari L Price
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Zhuravlev Y, Hirsch SM, Jordan SN, Dumont J, Shirasu-Hiza M, Canman JC. CYK-4 regulates Rac, but not Rho, during cytokinesis. Mol Biol Cell 2017; 28:1258-1270. [PMID: 28298491 PMCID: PMC5415020 DOI: 10.1091/mbc.e17-01-0020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The roles of the Rho-family GAP CYK-4 and small GTPase Rac during cytokinesis are examined in Caenorhabditis elegans embryos. CYK-4 opposes Rac (and potentially Cdc42) activity during cytokinesis. There is no evidence that CYK-4 is upstream of Rho activity or that Rac disruption is a general suppressor of cytokinesis failure. Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis.
Collapse
Affiliation(s)
- Yelena Zhuravlev
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Sophia M Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
23
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Pacquelet A. Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry. Results Probl Cell Differ 2017; 61:115-140. [PMID: 28409302 DOI: 10.1007/978-3-319-53150-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first division of the one-cell C. elegans embryo has been a fundamental model in deciphering the mechanisms underlying asymmetric cell division. Polarization of the one-cell zygote is induced by a signal from the sperm centrosome and results in the asymmetric distribution of PAR proteins. Multiple mechanisms then maintain PAR polarity until the end of the first division. Once asymmetrically localized, PAR proteins control several essential aspects of asymmetric division, including the position of the mitotic spindle along the polarity axis. Coordination of the spindle and cytokinetic furrow positions is the next essential step to ensure proper asymmetric division. In this chapter, I review the different mechanisms underlying these successive steps of asymmetric division. Work from the last 30 years has revealed the existence of multiple and redundant regulatory pathways which ensure division robustness. Besides the essential role of PAR proteins, this work also emphasizes the importance of both microtubules and actomyosin throughout the different steps of asymmetric division.
Collapse
Affiliation(s)
- Anne Pacquelet
- CNRS, UMR6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France. .,CNRS UMR6290-IGDR, 2 avenue du Professeur Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
25
|
Jordan SN, Davies T, Zhuravlev Y, Dumont J, Shirasu-Hiza M, Canman JC. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 2016; 212:39-49. [PMID: 26728855 PMCID: PMC4700484 DOI: 10.1083/jcb.201510063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In asymmetrically dividing C. elegans embryos, the core cortical PAR proteins are required to retain septin and anillin at the anterior cortex away from the contractile ring and to promote normal F-actin levels at the contractile ring and successful cytokinesis. Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Yelena Zhuravlev
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unites Mixtes de Recherche 7592, Universite Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
26
|
Pacquelet A, Uhart P, Tassan JP, Michaux G. PAR-4 and anillin regulate myosin to coordinate spindle and furrow position during asymmetric division. J Cell Biol 2015; 210:1085-99. [PMID: 26416962 PMCID: PMC4586735 DOI: 10.1083/jcb.201503006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During asymmetric cell division, the mitotic spindle and polarized myosin can both determine the position of the cytokinetic furrow. However, how cells coordinate signals from the spindle and myosin to ensure that cleavage occurs through the spindle midzone is unknown. Here, we identify a novel pathway that is essential to inhibit myosin and coordinate furrow and spindle positions during asymmetric division. In Caenorhabditis elegans one-cell embryos, myosin localizes at the anterior cortex whereas the mitotic spindle localizes toward the posterior. We find that PAR-4/LKB1 impinges on myosin via two pathways, an anillin-dependent pathway that also responds to the cullin CUL-5 and an anillin-independent pathway involving the kinase PIG-1/MELK. In the absence of both PIG-1/MELK and the anillin ANI-1, myosin accumulates at the anterior cortex and induces a strong displacement of the furrow toward the anterior, which can lead to DNA segregation defects. Regulation of asymmetrically localized myosin is thus critical to ensure that furrow and spindle midzone positions coincide throughout cytokinesis.
Collapse
Affiliation(s)
- Anne Pacquelet
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France Université de Rennes 1, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Perrine Uhart
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France Université de Rennes 1, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Jean-Pierre Tassan
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France Université de Rennes 1, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Grégoire Michaux
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France Université de Rennes 1, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| |
Collapse
|
27
|
A comparative analysis of spindle morphometrics across metazoans. Curr Biol 2015; 25:1542-50. [PMID: 26004761 DOI: 10.1016/j.cub.2015.04.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/21/2022]
Abstract
Cell division in all eukaryotes depends on function of the spindle, a microtubule-based structure that segregates chromosomes to generate daughter cells in mitosis or haploid gametes in meiosis. Spindle size adapts to changes in cell size and shape, which vary dramatically across species and within a multicellular organism, but the nature of scaling events and their underlying mechanisms are poorly understood. Cell size variations are most pronounced in early animal development, as egg diameters range from tens of microns up to millimeters across animal phyla, and decrease several orders of magnitude during rapid reductive divisions. During early embryogenesis in the model organisms X. laevis and C. elegans, the spindle scales with cell size [1, 2], a phenomenon regulated by molecules that modulate microtubule dynamics [3-6], as well as by limiting cytoplasmic volume [7, 8]. However, it is not known to what extent spindle scaling is conserved across organisms and among different cell types. Here we show that in a range of metazoan phyla, mitotic spindle length decreased with cell size across an ∼30-fold difference in zygote size. Maximum spindle length varied, but linear spindle scaling occurred similarly in all species once embryonic cell diameter reduced to 140 μm. In contrast, we find that the female meiotic spindle does not scale as closely to egg size, adopting a more uniform size across species that most likely reflects its specialized function. Our analysis reveals that spindle morphometrics change abruptly, within one cell cycle, at the transition from meiosis to mitosis in most animals.
Collapse
|
28
|
Rincon SA, Bhatia P, Bicho C, Guzman-Vendrell M, Fraisier V, Borek WE, Alves FDL, Dingli F, Loew D, Rappsilber J, Sawin KE, Martin SG, Paoletti A. Pom1 regulates the assembly of Cdr2-Mid1 cortical nodes for robust spatial control of cytokinesis. ACTA ACUST UNITED AC 2014; 206:61-77. [PMID: 24982431 PMCID: PMC4085711 DOI: 10.1083/jcb.201311097] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pom1 regulation of Cdr2 membrane association and interaction with Mid1 prevents Cdr2 assembly into stable nodes in the cell tip region, which ensures proper positioning of cytokinetic ring precursors and accurate division plane positioning in fission yeast. Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.
Collapse
Affiliation(s)
- Sergio A Rincon
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Claudia Bicho
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Mercè Guzman-Vendrell
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Vincent Fraisier
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| | - Weronika E Borek
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Florent Dingli
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, FranceCentre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France
| | - Damarys Loew
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, FranceCentre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Paoletti
- Centre de Recherche and Laboratory of Mass Spectrometry and Proteomics, Institut Curie, F-75248 Paris, France Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, F-75248 Paris, France
| |
Collapse
|
29
|
Green RA, Mayers JR, Wang S, Lewellyn L, Desai A, Audhya A, Oegema K. The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules. ACTA ACUST UNITED AC 2014; 203:505-20. [PMID: 24217623 PMCID: PMC3824018 DOI: 10.1083/jcb.201306036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septins, but not midbody microtubules, are important for daughter cell cytoplasmic isolation and ESCRT-dependent midbody ring release during abscission. Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.
Collapse
Affiliation(s)
- Rebecca A Green
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
30
|
van Oostende Triplet C, Jaramillo Garcia M, Haji Bik H, Beaudet D, Piekny A. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J Cell Sci 2014; 127:3699-710. [DOI: 10.1242/jcs.147504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that separates the cell into two daughter cells. The mitotic spindle, comprised of astral and central spindle microtubules, couples contractile ring ingression with DNA segregation. Cues from the central spindle activate RhoA, the upstream regulator of the contractile ring. However, additional cues from the astral microtubules also reinforce the localization of active RhoA. Using human cells, we show that astral and central spindle microtubules independently control the localization of contractile proteins during cytokinesis. Astral microtubules restrict the accumulation and localization of contractile proteins during mitosis, while the central spindle forms a discrete ring by directing RhoA activation in the equatorial plane. Anillin stabilizes the contractile ring during cytokinesis. We show that human anillin interacts with astral microtubules, which is competed by its cortical recruitment by active RhoA. Anillin restricts the localization of myosin at the equatorial cortex, and NuMA (part of the microtubule-tethering complex that regulates spindle position) at the polar cortex. The sequestration of anillin by astral microtubules may alter the organization of cortical proteins to polarize cells for cytokinesis.
Collapse
|
31
|
Giansanti MG, Fuller MT. What Drosophila spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton (Hoboken) 2012; 69:869-81. [PMID: 22927345 DOI: 10.1002/cm.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022]
Abstract
Cytokinesis separates the genomic material and organelles of a dividing cell equitably into two physically distinct daughter cells at the end of cell division. This highly choreographed process involves coordinated reorganization and regulated action of the actin and microtubule cytoskeletal systems, an assortment of motor proteins, and membrane trafficking components. Due to their large size, the ease with which exquisite cytological analysis may be performed on them, and the availability of numerous mutants and other genetic tools, Drosophila spermatocytes have provided an excellent system for exploring the mechanistic basis for the temporally programmed and precise spatially localized events of cytokinesis. Mutants defective in male meiotic cytokinesis can be easily identified in forward genetic screens by the production of multinucleate spermatids. In addition, the weak spindle assembly checkpoint in spermatocytes, which causes only a small delay of anaphase onset in the presence of unattached chromosomes, allows investigation of whether gene products required for spindle assembly and chromosome segregation are also involved in cytokinesis. Perhaps due to the large size of spermatocytes and the requirement for two rapid-fire rounds of division without intervening S or growth phases during meiosis, male meiotic mutants have also revealed much about molecular mechanisms underlying new membrane addition during cytokinesis. Finally, cell type-specific differences in the events that set up and complete cytokinesis are emerging from comparison of spermatocytes with cells undergoing mitosis either elsewhere in the organism or in tissue culture.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma, Piazzale A. Moro 5, Roma, Italy.
| | | |
Collapse
|
32
|
Abstract
Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
33
|
Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A. An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One 2012; 7:e34888. [PMID: 22514687 PMCID: PMC3325936 DOI: 10.1371/journal.pone.0034888] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022] Open
Abstract
Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone.
Collapse
Affiliation(s)
- Paul Frenette
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Eric Haines
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Michael Loloyan
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mena Kinal
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Paknoosh Pakarian
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
34
|
Tse YC, Piekny A, Glotzer M. Anillin promotes astral microtubule-directed cortical myosin polarization. Mol Biol Cell 2011; 22:3165-75. [PMID: 21737681 PMCID: PMC3164463 DOI: 10.1091/mbc.e11-05-0399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Assembly of a cytokinetic contractile ring is a form of cell polarization in which the equatorial cell cortex becomes differentiated from the polar regions. Microtubules direct cytokinetic polarization via the central spindle and astral microtubules. The mechanism of central spindle-directed furrow formation is reasonably well understood, but the aster-directed pathway is not. In aster-directed furrowing, cytoskeletal factors accumulate to high levels at sites distal to the asters and at reduced levels at cortical sites near the asters. In this paper, we demonstrate that the cytoskeletal organizing protein anillin (ANI-1) promotes the formation of an aster-directed furrow in Caenorhabditis elegans embryos. Microtubule-directed nonmuscle myosin II polarization is aberrant in embryos depleted of ANI-1. In contrast, microtubule-directed polarized ANI-1 localization is largely unaffected by myosin II depletion. Consistent with a role in the induction of cortical asymmetry, ANI-1 also contributes to the polarization of arrested oocytes. Anillin has an evolutionarily conserved capacity to associate with microtubules, possibly providing an inhibitory mechanism to promote polarization of the cell cortex.
Collapse
Affiliation(s)
- Yu Chung Tse
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K. The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. ACTA ACUST UNITED AC 2011; 193:155-69. [PMID: 21464231 PMCID: PMC3082186 DOI: 10.1083/jcb.201008138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly. The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
36
|
Begasse ML, Hyman AA. The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. Results Probl Cell Differ 2011; 53:109-33. [PMID: 21630143 DOI: 10.1007/978-3-642-19065-0_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout the development of an organism, it is essential that the cell cycle machinery is fine-tuned to generate cells of different fate. A series of asymmetric cell divisions leads to lineage specification. The Caenorhabditis elegans embryo is an excellent system to study various aspects of the early embryonic cell cycle. The invariant nature of the rapid cell divisions is the key feature for studying the effects of small perturbations to a complex process such as the cell cycle. The thorough characterization of the asymmetric first cell division of the C. elegans embryo has given great insight on how the oscillations of the cell cycle coordinate with the cytoplasmic rearrangements that ultimately lead to two developmentally distinct daughter cells.
Collapse
Affiliation(s)
- Maria L Begasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
37
|
Abstract
The mitotic spindle accurately segregates genetic instructions by moving chromosomes to spindle poles (anaphase A) and separating the poles (anaphase B) so that, in general, the chromosomes and poles are positioned near the centers of the nascent daughter cell products of each cell division. Because the size of different types of dividing cells, and thus the spacing of their daughter cell centers, can vary significantly, the length of the metaphase or postanaphase B spindle often scales with cell size. However, significant exceptions to this scaling rule occur, revealing the existence of cell size–independent, spindle-associated mechanisms of spindle length control. The control of spindle length reflects the action of mitotic force-generating mechanisms, and its study may illuminate general principles by which cells regulate the size of internal structures. Here we review molecules and mechanisms that control spindle length, how these mechanisms are deployed in different systems, and some quantitative models that describe the control of spindle length.
Collapse
Affiliation(s)
- Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | |
Collapse
|
38
|
Abstract
Division plane specification in animal cells has long been presumed to involve direct contact between microtubules of the anaphase mitotic spindle and the cell cortex. In this issue, von Dassow et al. (von Dassow et al. 2009. J. Cell. Biol. doi:10.1083/jcb.200907090) challenge this assumption by showing that spindle microtubules can effectively position the division plane at a distance from the cell cortex.
Collapse
Affiliation(s)
- Julie C Canman
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|