1
|
Kumar D, Ghosh SK. Chromosome hitchhiking: a potential strategy adopted by the selfish yeast plasmids to ensure symmetric inheritance during cell division. Biochem Soc Trans 2024; 52:2359-2372. [PMID: 39670686 DOI: 10.1042/bst20231555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells. These similarities include formation of a complex where the plasmid- or viral encoded proteins bind to a plasmid- or viral genome-borne locus, respectively and interaction of the complex with the host proteins. These together form a partitioning system that ensures stable symmetric inheritance of both these genomes from mother to daughter cells. Recent studies with substantial evidence showed that the 2-micron plasmid, like episomes of viruses such as Epstein-Barr virus, relies on tethering itself to the host chromosomes in a non-random fashion for equal segregation. This review delves into the probable chromosome hitchhiking mechanisms of 2-micron plasmid during its segregation, highlighting the roles of specific plasmid-encoded proteins and their interactions with host proteins and the chromosomes. Understanding these mechanisms provides broader insights into the genetic stability and inheritance of extrachromosomal genetic elements across diverse biological systems.
Collapse
Affiliation(s)
- Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Jain R, Epstein JA. Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:341-364. [PMID: 38884720 DOI: 10.1007/978-3-031-44087-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Capelson M. You are who your friends are-nuclear pore proteins as components of chromatin-binding complexes. FEBS Lett 2023; 597:2769-2781. [PMID: 37652464 PMCID: PMC11081553 DOI: 10.1002/1873-3468.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Nuclear pore complexes are large multicomponent protein complexes that are embedded in the nuclear envelope, where they mediate nucleocytoplasmic transport. In addition to supporting transport, nuclear pore components, termed nucleoporins (Nups), can interact with chromatin and influence genome function. A subset of Nups can also localize to the nuclear interior and bind chromatin intranuclearly, providing an opportunity to investigate chromatin-associated functions of Nups outside of the transport context. This review focuses on the gene regulatory functions of such intranuclear Nups, with a particular emphasis on their identity as components of several chromatin regulatory complexes. Recent proteomic screens have identified Nups as interacting partners of active and repressive epigenetic machinery, architectural proteins, and DNA replication complexes, providing insight into molecular mechanisms via which Nups regulate gene expression programs. This review summarizes these interactions and discusses their potential functions in the broader framework of nuclear genome organization.
Collapse
Affiliation(s)
- Maya Capelson
- Cell and Molecular Biology Program, Department of Biology, San Diego State University, CA, USA
| |
Collapse
|
4
|
Ma CH, Kumar D, Jayaram M, Ghosh SK, Iyer VR. The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation. PLoS Genet 2023; 19:e1010986. [PMID: 37812641 PMCID: PMC10586699 DOI: 10.1371/journal.pgen.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Makkuni Jayaram
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Prasad P. Functional analysis of the RSC9 component of RSC chromatin remodeler reveals non-overlapping roles among the different subunits in C. albicans. 3 Biotech 2022; 12:263. [PMID: 36091090 PMCID: PMC9448841 DOI: 10.1007/s13205-022-03341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/29/2022] [Indexed: 11/01/2022] Open
Abstract
RSC (Remodel the Structure of Chromatin) chromatin remodeler in S. cerevisiae has multiple subunits, some of them are essential whereas the others are non-essential for cell viability. Not all the subunits are involved in all the functions of RSC complex. With several lines of evidences showing somewhat similar role of RSC complex [through Sth1 (Snf Two Homolog 1)] in different aspects of cell cycle (chromosome segregation and kinetochore function, etc.), DNA damage repair and stress response in C. albicans and S. cerevisiae, we hypothesize the organization of RSC complex in C. albicans could follow the same pattern as observed in S. cerevisiae. We hypothesize that the subset of the subunits could form different subcomplexes to do different biological functions where several subunits are common among the subcomplexes. We wished to address if the accessory component Rsc9 protein of RSC complex has any non-overlapping function with respect to the ATPase component Sth1 of the RSC complex in C. albicans. Here, we have shown that the rsc9 mutant exhibit abnormal nuclear segregation, though budding profile is comparable to the wild type. Rsc9 does not affect yeast to hyphae transition. Though both Sth1 and Rsc9 belong to the same RSC complex, individual protein is functionally distinct, and the respective mutant shows different phenotype and different consequence in cellular process. This suggests that though RSC works as a single complex having global remodeling activity, different subunit can form distinct modules which show functional disparity, as the components show some similar and some distinct function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03341-w.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
- Present Address: Department of Biotechnology, National Institute of Technology, Warangal, Telangana India
| |
Collapse
|
6
|
Deolal P, Jamir I, Mishra K. Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Nucleus 2022; 13:79-93. [PMID: 35171083 PMCID: PMC8855845 DOI: 10.1080/19491034.2022.2034286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in Saccharomyces cerevisiae, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Dimapur, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Deolal P, Male G, Mishra K. The challenge of staying in shape: nuclear size matters. Curr Genet 2021; 67:605-612. [PMID: 33779777 DOI: 10.1007/s00294-021-01176-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cellular organelles have unique morphology and the organelle size to cell size ratio is regulated. Nucleus is one of the most prominent, usually round in shape, organelle of a eukaryotic cell that occupies 8-10% of cellular volume. The shape and size of nucleus is known to undergo remodeling during processes such as cell growth, division and certain stresses. Regulation of protein and lipid distribution at the nuclear envelope is crucial for preserving the nuclear morphology and size. As size and morphology are interlinked, altering one influences the other. In this perspective, we discuss the relationship between size and shape regulation of the nucleus.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Shang R, Zhu F, Li Y, He P, Qi J, Chen Y, Sun F, Zhang Y, Wang Q, Shen Z. Identification and localization of Nup170 in the microsporidian Nosema bombycis. Parasitol Res 2021; 120:2125-2134. [PMID: 33768334 DOI: 10.1007/s00436-021-07129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
As one of the core framework proteins of nuclear pore complex (NPC), nucleoporin Nupl70 acts as a structural adapter between the nucleolus and nuclear pore membrane and maintains the stability of NPC structure through interaction with other proteins. In this study, we identified a Nup170 protein in the microsporidian Nosema bombycis for the first time and named it as NbNup170. Secondary structure prediction showed that the NbNup170 contains α-helices and random coils. The three-dimensional structure of NbNup170 is elliptical in shape. Phylogenetic analysis based on the Nup170 and homologous sequences showed that N. bombycis clustered together with Vairimorpha ceranae and Vairimorpha apis. The immunofluorescence localization results showed that the NbNup170 was located on the plasma membrane of the dormant spore and transferred to the surface of sporoplasm in a punctate pattern when the dormant spore has finished germination, and that NbNup170 was distributed on the nuclear membrane and both sides of the nuclei of early proliferative phase, and only on the nuclear membrane during sporogonic phase in the N. bombycis. qPCR analysis showed that the relative expression level of NbNup170 maintained at a low level from 30 to 78 h post-infection with N. bombycis, then reached the highest at 102 h, while that of NbNup170 was repressed at a very low level throughout its life cycle by RNA interference. These results suggested that NbNup170 protein is involved in the proliferative phase and active during the sporogonic phase of N. bombycis.
Collapse
Affiliation(s)
- Ruisha Shang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, Yunnan Province, China
| | - Yu Li
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Jingru Qi
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Yong Chen
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Fuzhen Sun
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China.
| |
Collapse
|
10
|
Charifi F, Churikov D, Eckert-Boulet N, Minguet C, Jourquin F, Hardy J, Lisby M, Simon MN, Géli V. Rad52 SUMOylation functions as a molecular switch that determines a balance between the Rad51- and Rad59-dependent survivors. iScience 2021; 24:102231. [PMID: 33748714 PMCID: PMC7966982 DOI: 10.1016/j.isci.2021.102231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Functional telomeres in yeast lacking telomerase can be restored by rare Rad51- or Rad59-dependent recombination events that lead to type I and type II survivors, respectively. We previously proposed that polySUMOylation of proteins and the SUMO-targeted ubiquitin ligase Slx5-Slx8 are key factors in type II recombination. Here, we show that SUMOylation of Rad52 favors the formation of type I survivors. Conversely, preventing Rad52 SUMOylation partially bypasses the requirement of Slx5-Slx8 for type II recombination. We further report that SUMO-dependent proteasomal degradation favors type II recombination. Finally, inactivation of Rad59, but not Rad51, impairs the relocation of eroded telomeres to the Nuclear Pore complexes (NPCs). We propose that Rad59 cooperates with non-SUMOylated Rad52 to promote type II recombination at NPCs, resulting in the emergence of more robust survivors akin to ALT cancer cells. Finally, neither Rad59 nor Rad51 is required by itself for the survival of established type II survivors.
Collapse
Affiliation(s)
- Ferose Charifi
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | | | - Christopher Minguet
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Frédéric Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Julien Hardy
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| |
Collapse
|
11
|
Kumanski S, Viart BT, Kossida S, Moriel-Carretero M. Lipid Droplets Are a Physiological Nucleoporin Reservoir. Cells 2021; 10:472. [PMID: 33671805 PMCID: PMC7926788 DOI: 10.3390/cells10020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.
Collapse
Affiliation(s)
- Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| | - Benjamin T. Viart
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - Sofia Kossida
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| |
Collapse
|
12
|
Male G, Deolal P, Manda NK, Yagnik S, Mazumder A, Mishra K. Nucleolar size regulates nuclear envelope shape in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs242172. [PMID: 32973112 DOI: 10.1242/jcs.242172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear shape and size are cell-type specific. Change in nuclear shape is seen during cell division, development and pathology. The nucleus of Saccharomycescerevisiae is spherical in interphase and becomes dumbbell shaped during mitotic division to facilitate the transfer of one nucleus to the daughter cell. Because yeast cells undergo closed mitosis, the nuclear envelope remains intact throughout the cell cycle. The pathways that regulate nuclear shape are not well characterized. The nucleus is organized into various subcompartments, with the nucleolus being the most prominent. We have conducted a candidate-based genetic screen for nuclear shape abnormalities in S. cerevisiae to ask whether the nucleolus influences nuclear shape. We find that increasing nucleolar volume triggers a non-isometric nuclear envelope expansion resulting in an abnormal nuclear envelope shape. We further show that the tethering of rDNA to the nuclear envelope is required for the appearance of these extensions.
Collapse
Affiliation(s)
- Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shantam Yagnik
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Aprotim Mazumder
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally, Serilingampally Manda 500046l, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
13
|
Kuhn TM, Pascual-Garcia P, Gozalo A, Little SC, Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol 2019; 218:2945-2961. [PMID: 31366666 PMCID: PMC6719443 DOI: 10.1083/jcb.201807139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state.
Collapse
Affiliation(s)
- Terra M Kuhn
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Alejandro Gozalo
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Sun J, Shi Y, Yildirim E. The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure and Gene Regulation. Trends Genet 2019; 35:579-588. [PMID: 31213386 DOI: 10.1016/j.tig.2019.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Nuclear pore complex (NPC)-mediated nucleocytoplasmic trafficking is essential for key cellular processes, such as cell growth, cell differentiation, and gene regulation. The NPC has also been viewed as a nuclear architectural platform that impacts genome function and gene expression by mediating spatial and temporal coordination between transcription factors, chromatin regulatory proteins, and transcription machinery. Recent findings have uncovered differential and cell type-specific expression and distinct chromatin-binding patterns of individual NPC components known as nucleoporins (Nups). Here, we examine recent studies that investigate the functional roles of NPCs and Nups in transcription, chromatin organization, and epigenetic gene regulation in the context of development and disease.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Yuming Shi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Fantastic nuclear envelope herniations and where to find them. Biochem Soc Trans 2018; 46:877-889. [PMID: 30026368 DOI: 10.1042/bst20170442] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Morphological abnormalities of the bounding membranes of the nucleus have long been associated with human diseases from cancer to premature aging to neurodegeneration. Studies over the past few decades support that there are both cell intrinsic and extrinsic factors (e.g. mechanical force) that can lead to nuclear envelope 'herniations', a broad catch-all term that reveals little about the underlying molecular mechanisms that contribute to these morphological defects. While there are many genetic perturbations that could ultimately change nuclear shape, here, we focus on a subset of nuclear envelope herniations that likely arise as a consequence of disrupting physiological nuclear membrane remodeling pathways required to maintain nuclear envelope homeostasis. For example, stalling of the interphase nuclear pore complex (NPC) biogenesis pathway and/or triggering of NPC quality control mechanisms can lead to herniations in budding yeast, which are remarkably similar to those observed in human disease models of early-onset dystonia. By also examining the provenance of nuclear envelope herniations associated with emerging nuclear autophagy and nuclear egress pathways, we will provide a framework to help understand the molecular pathways that contribute to nuclear deformation.
Collapse
|
16
|
Sing TL, Hung MP, Ohnuki S, Suzuki G, San Luis BJ, McClain M, Unruh JR, Yu Z, Ou J, Marshall-Sheppard J, Huh WK, Costanzo M, Boone C, Ohya Y, Jaspersen SL, Brown GW. The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. J Cell Biol 2018; 217:2445-2462. [PMID: 29875260 PMCID: PMC6028538 DOI: 10.1083/jcb.201709009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Ploidy is tightly regulated in eukaryotic cells and is critical for cell function and survival. Cells coordinate multiple pathways to ensure replicated DNA is segregated accurately to prevent abnormal changes in chromosome number. In this study, we characterize an unanticipated role for the Saccharomyces cerevisiae "remodels the structure of chromatin" (RSC) complex in ploidy maintenance. We show that deletion of any of six nonessential RSC genes causes a rapid transition from haploid to diploid DNA content because of nondisjunction events. Diploidization is accompanied by diagnostic changes in cell morphology and is stably maintained without further ploidy increases. We find that RSC promotes chromosome segregation by facilitating spindle pole body (SPB) duplication. More specifically, RSC plays a role in distributing two SPB insertion factors, Nbp1 and Ndc1, to the new SPB. Thus, we provide insight into a role for a SWI/SNF family complex in SPB duplication and ploidy maintenance.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Minnie P Hung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Godai Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Bryan-Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jiongwen Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jesse Marshall-Sheppard
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
The evolutionarily conserved factor Sus1/ENY2 plays a role in telomere length maintenance. Curr Genet 2017; 64:635-644. [DOI: 10.1007/s00294-017-0778-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/26/2022]
|
18
|
Hsp90 and p23 Molecular Chaperones Control Chromatin Architecture by Maintaining the Functional Pool of the RSC Chromatin Remodeler. Mol Cell 2016; 64:888-899. [PMID: 27818141 DOI: 10.1016/j.molcel.2016.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/11/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Molecular chaperones govern protein homeostasis, being allied to the beginning (folding) and ending (degradation) of the protein life cycle. Yet, the Hsp90 system primarily associates with native factors, including fully assembled complexes. The significance of these connections is poorly understood. To delineate why Hsp90 and its cochaperone p23 interact with a mature structure, we focused on the RSC chromatin remodeler. Both Hsp90 and p23 triggered the release of RSC from DNA or a nucleosome. Although Hsp90 only freed bound RSC, p23 enhanced nucleosome remodeling prior to discharging the complex. In vivo, RSC mobility and remodeling function were chaperone dependent. Our results suggest Hsp90 and p23 contribute to proteostasis by chaperoning mature factors through energetically unfavorable events, thereby maintaining the cellular pool of active native proteins. In the case of RSC, p23 and Hsp90 promote a dynamic action, allowing a limited number of remodelers to effectively maintain chromatin in a pliable state.
Collapse
|
19
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
20
|
Norman KL, Kumar A. Mutant power: using mutant allele collections for yeast functional genomics. Brief Funct Genomics 2016; 15:75-84. [PMID: 26453908 PMCID: PMC5065357 DOI: 10.1093/bfgp/elv042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology.
Collapse
|
21
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
22
|
Cokol M, Weinstein ZB, Yilancioglu K, Tasan M, Doak A, Cansever D, Mutlu B, Li S, Rodriguez-Esteban R, Akhmedov M, Guvenek A, Cokol M, Cetiner S, Giaever G, Iossifov I, Nislow C, Shoichet B, Roth FP. Large-scale identification and analysis of suppressive drug interactions. CHEMISTRY & BIOLOGY 2014; 21:541-551. [PMID: 24704506 PMCID: PMC4281482 DOI: 10.1016/j.chembiol.2014.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/26/2014] [Accepted: 02/07/2014] [Indexed: 11/29/2022]
Abstract
One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound ("drug") pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate.
Collapse
Affiliation(s)
- Murat Cokol
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| | - Zohar B Weinstein
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kaan Yilancioglu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Murat Tasan
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Allison Doak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dilay Cansever
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Beste Mutlu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Siyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Raul Rodriguez-Esteban
- Department of Computational Biology, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Murodzhon Akhmedov
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Aysegul Guvenek
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Melike Cokol
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Selim Cetiner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Guri Giaever
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Corey Nislow
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, One Jimmy Fund Way, Boston, MA 02215, USA; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
23
|
Ptak C, Aitchison JD, Wozniak RW. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 2014; 28:46-53. [PMID: 24657998 DOI: 10.1016/j.ceb.2014.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/21/2022]
Abstract
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John D Aitchison
- Seattle Biomedical Research Institute and Institute for Systems Biology, 307 Westlake Ave N, Seattle, WA 98109, USA.
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
24
|
Pascual-Garcia P, Capelson M. Nuclear pores as versatile platforms for gene regulation. Curr Opin Genet Dev 2014; 25:110-7. [PMID: 24632227 DOI: 10.1016/j.gde.2013.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
Functional compartmentalization of the genome relies on interactions between genomic regions and various nuclear scaffolds and macro-complexes. The Nuclear Pore Complex (NPC) is a large nuclear envelope-embedded protein complex, which creates a highly regulated transport channel between the nucleus and the cytoplasm. In addition to its central role in transport, the NPC has been linked to genome compartmentalization via binding to specific regions of the genome and association with gene regulatory machinery. Although originally proposed to preferentially associate with active genes, the NPC has now been implicated in both gene activating and gene silencing processes. Here, we review recent findings that highlight the roles of various components of the NPC in transcriptional activation, transcriptional memory, heterochromatin formation, post-transcriptional gene silencing and RNA processing. Together, these findings suggest that the nuclear pore is utilized as a regulatory platform for a number of distinct gene expression processes and further point to its central role in setting up particular expression environments on the genomic template.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, 9-101 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Maya Capelson
- Department of Cell and Developmental Biology, University of Pennsylvania, 9-101 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
25
|
Sizing and shaping the nucleus: mechanisms and significance. Curr Opin Cell Biol 2014; 28:16-27. [PMID: 24503411 DOI: 10.1016/j.ceb.2014.01.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 01/14/2023]
Abstract
The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression.
Collapse
|
26
|
Jevtić P, Levy DL. Mechanisms of nuclear size regulation in model systems and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:537-69. [PMID: 24563365 DOI: 10.1007/978-1-4899-8032-8_25] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Changes in nuclear size have long been used by cytopathologists as an important parameter to diagnose, stage, and prognose many cancers. Mechanisms underlying these changes and functional links between nuclear size and malignancy are largely unknown. Understanding mechanisms of nuclear size regulation and the physiological significance of proper nuclear size control will inform the interplay between altered nuclear size and oncogenesis. In this chapter we review what is known about molecular mechanisms of nuclear size control based on research in model experimental systems including yeast, Xenopus, Tetrahymena, Drosophila, plants, mice, and mammalian cell culture. We discuss how nuclear size is influenced by DNA ploidy, nuclear structural components, cytoplasmic factors and nucleocytoplasmic transport, the cytoskeleton, and the extracellular matrix. Based on these mechanistic insights, we speculate about how nuclear size might impact cell physiology and whether altered nuclear size could contribute to cancer development and progression. We end with some outstanding questions about mechanisms and functions of nuclear size regulation.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA,
| | | |
Collapse
|
27
|
Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40. [PMID: 24220500 PMCID: PMC4211598 DOI: 10.1016/j.chemphyslip.2013.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022]
Abstract
Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field.
Collapse
Affiliation(s)
- David J Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
28
|
Kiseleva E, Richardson AC, Fiserova J, Strunov AA, Spink MC, Johnson SR, Goldberg MW. Imaging yeast NPCs: from classical electron microscopy to Immuno-SEM. Methods Cell Biol 2014; 122:59-79. [PMID: 24857725 DOI: 10.1016/b978-0-12-417160-2.00003-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electron microscopy (EM) has been used extensively for the study of nuclear transport as well as the structure of the nuclear pore complex (NPC) and nuclear envelope. However, there are specific challenges faced when carrying out EM in one of the main model organisms used: the yeast, Saccharomyces cerevisiae. These are due to the presence of a cell wall, vacuoles, and a densely packed cytoplasm which, for transmission EM (TEM), make fixation, embedding, and imaging difficult. These also present problems for scanning EM (SEM) because cell wall removal and isolation of nuclei can easily damage the relatively fragile NPCs. We present some of the protocols we use to prepare samples for TEM and SEM to provide information about yeast NPC ultrastructure and the location of nucleoporins and transport factors by immunogold labeling within that ultrastructure.
Collapse
Affiliation(s)
- Elena Kiseleva
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russia
| | - A Christine Richardson
- Department of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Jindriska Fiserova
- Department of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Anton A Strunov
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russia
| | - Matthew C Spink
- Department of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Simeon R Johnson
- Department of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Martin W Goldberg
- Department of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| |
Collapse
|
29
|
Niepel M, Molloy KR, Williams R, Farr JC, Meinema AC, Vecchietti N, Cristea IM, Chait BT, Rout MP, Strambio-De-Castillia C. The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 2013; 24:3920-38. [PMID: 24152732 PMCID: PMC3861087 DOI: 10.1091/mbc.e13-07-0412] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mlp1p and Mlp2p form the basket of the yeast nuclear pore complex (NPC) and contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. The Mlps also embed the NPC within an extended interactome, which includes protein complexes involved in mRNP biogenesis, silencing, spindle organization, and protein degradation. The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.
Collapse
Affiliation(s)
- Mario Niepel
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065 Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065 Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland Istituto Cantonale di Microbiologia, 6500 Bellinzona, Switzerland Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Good PD, Kendall A, Ignatz-Hoover J, Miller EL, Pai DA, Rivera SR, Carrick B, Engelke DR. Silencing near tRNA genes is nucleosome-mediated and distinct from boundary element function. Gene 2013; 526:7-15. [PMID: 23707796 PMCID: PMC3745993 DOI: 10.1016/j.gene.2013.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Transfer RNA (tRNA) genes and other RNA polymerase III transcription units are dispersed in high copy throughout nuclear genomes, and can antagonize RNA polymerase II transcription in their immediate chromosomal locus. Previous work in Saccharomyces cerevisiae found that this local silencing required subnuclear clustering of the tRNA genes near the nucleolus. Here we show that the silencing also requires nucleosome participation, though the nature of the nucleosome interaction appears distinct from other forms of transcriptional silencing. Analysis of an extensive library of histone amino acid substitutions finds a large number of residues that affect the silencing, both in the histone N-terminal tails and on the nucleosome disk surface. The residues on the disk surfaces involved are largely distinct from those affecting other regulatory phenomena. Consistent with the large number of histone residues affecting tgm silencing, survey of chromatin modification mutations shows that several enzymes known to affect nucleosome modification and positioning are also required. The enzymes include an Rpd3 deacetylase complex, Hos1 deacetylase, Glc7 phosphatase, and the RSC nucleosome remodeling activity, but not multiple other activities required for other silencing forms or boundary element function at tRNA gene loci. Models for communication between the tRNA gene transcription complexes and local chromatin are discussed.
Collapse
Affiliation(s)
- Paul D. Good
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Ann Kendall
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Erin L. Miller
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Dave A. Pai
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Sara R. Rivera
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Brian Carrick
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - David R. Engelke
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| |
Collapse
|
31
|
Van de Vosse DW, Wan Y, Lapetina DL, Chen WM, Chiang JH, Aitchison JD, Wozniak RW. A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 2013; 152:969-83. [PMID: 23452847 DOI: 10.1016/j.cell.2013.01.049] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/13/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Embedded in the nuclear envelope, nuclear pore complexes (NPCs) not only regulate nuclear transport but also interface with transcriptionally active euchromatin, largely silenced heterochromatin, as well as the boundaries between these regions. It is unclear what functional role NPCs play in establishing or maintaining these distinct chromatin domains. We report that the yeast NPC protein Nup170p interacts with regions of the genome that contain ribosomal protein and subtelomeric genes, where it functions in nucleosome positioning and as a repressor of transcription. We show that the role of Nup170p in subtelomeric gene silencing is linked to its association with the RSC chromatin-remodeling complex and the silencing factor Sir4p, and that the binding of Nup170p and Sir4p to subtelomeric chromatin is cooperative and necessary for the association of telomeres with the nuclear envelope. Our results establish the NPC as an active participant in silencing and the formation of peripheral heterochromatin.
Collapse
Affiliation(s)
- David W Van de Vosse
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Edens LJ, White KH, Jevtic P, Li X, Levy DL. Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 2012; 23:151-9. [PMID: 23277088 DOI: 10.1016/j.tcb.2012.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Cell size varies greatly among different cell types and organisms, especially during early development when cell division is rapid with little overall growth. A fundamental question is how organelle size is regulated relative to cell size. The nucleus exhibits exquisite size scaling during development and between species, and nuclear size is often altered in cancer cells. Recent studies have elucidated mechanisms of nuclear size regulation in a variety of experimental systems, opening the door to future research on how nuclear size impacts upon cell and nuclear function and subnuclear organization. In this review we discuss studies that have clarified nuclear size control mechanisms and how these results have or will contribute to our understanding of the functional significance of nuclear size.
Collapse
Affiliation(s)
- Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Transcriptional regulation is a complex process that requires the integrated action of many multi-protein complexes. The way in which a living cell coordinates the action of these complexes in time and space is still poorly understood. Recent work has shown that nuclear pores, well known for their role in 3′ processing and export of transcripts, also participate in the control of transcriptional initiation. We have recently begun to explore how nuclear pores interface with the well-described machinery that regulates initiation. This work led to the discovery that specific nucleoporins are required for binding of the repressor protein Mig1 to its site in target promoters. Nuclear pores are therefore involved in repressing, as well as activating, transcription. Here we discuss in detail the main models explaining our result and consider what each implies about the roles that nuclear pores play in the regulation of gene expression.
Collapse
Affiliation(s)
- Nayan J Sarma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
34
|
Abstract
Take a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size. What defines nuclear shape and nuclear size, and how does nuclear geometry affect nuclear function? While the answer to the latter question remains largely unknown, significant progress has been made towards understanding the former. In this review, we provide an overview of the factors and forces that affect nuclear shape and size, discuss the relationship between ER structure and nuclear morphology, and speculate on the possible connection between nuclear size and its shape. We also note the many interesting questions that remain to be explored.
Collapse
Affiliation(s)
- Alison D. Walters
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| | - Ananth Bommakanti
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| | - Orna Cohen-Fix
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Schneiter R, Cole CN. Integrating complex functions: coordination of nuclear pore complex assembly and membrane expansion of the nuclear envelope requires a family of integral membrane proteins. Nucleus 2012; 1:387-92. [PMID: 21326820 DOI: 10.4161/nucl.1.5.12333] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/14/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
The nuclear envelope harbors numerous large proteinaceous channels, the nuclear pore complexes (NPCs), through which macromolecular exchange between the cytosol and the nucleoplasm occurs. This double-membrane nuclear envelope is continuous with the endoplasmic reticulum and thus functionally connected to such diverse processes as vesicular transport, protein maturation and lipid synthesis. Recent results obtained from studies in Saccharomyces cerevisiae indicate that assembly of the nuclear pore complex is functionally dependent upon maintenance of lipid homeostasis of the ER membrane. Previous work from one of our laboratories has revealed that an integral membrane protein Apq12 is important for the assembly of functional nuclear pores. Cells lacking APQ12 are viable but cannot grow at low temperatures, have aberrant NPCs and a defect in mRNA export. Remarkably, these defects in NPC assembly can be overcome by supplementing cells with a membrane fluidizing agent, benzyl alcohol, suggesting that Apq12 impacts the flexibility of the nuclear membrane, possibly by adjusting its lipid composition when cells are shifted to a reduced temperature. Our new study now expands these findings and reveals that an essential membrane protein, Brr6, shares at least partially overlapping functions with Apq12 and is also required for assembly of functional NPCs. A third nuclear envelope membrane protein, Brl1, is related to Brr6, and is also required for NPC assembly. Because maintenance of membrane homeostasis is essential for cellular survival, the fact that these three proteins are conserved in fungi that undergo closed mitoses, but are not found in metazoans or plants, may indicate that their functions are performed by proteins unrelated at the primary sequence level to Brr6, Brl1 and Apq12 in cells that disassemble their nuclear envelopes during mitosis.
Collapse
Affiliation(s)
- Roger Schneiter
- Division of Biochemistry, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| | | |
Collapse
|
36
|
Fernandez-Martinez J, Phillips J, Sekedat MD, Diaz-Avalos R, Velazquez-Muriel J, Franke JD, Williams R, Stokes DL, Chait BT, Sali A, Rout MP. Structure-function mapping of a heptameric module in the nuclear pore complex. ACTA ACUST UNITED AC 2012; 196:419-34. [PMID: 22331846 PMCID: PMC3283990 DOI: 10.1083/jcb.201109008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Integration of EM, protein–protein interaction, and phenotypic data reveals novel insights into the structure and function of the nuclear pore complex’s ∼600-kD heptameric Nup84 complex. The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ∼600-kD heptameric Nup84 complex, to a precision of ∼1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain–mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC’s interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution.
Collapse
|
37
|
Burns LT, Wente SR. Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol 2012; 24:341-9. [PMID: 22326668 DOI: 10.1016/j.ceb.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
The nuclear envelope (NE) in eukaryotic cells serves as the physical barrier between the nucleus and cytoplasm. Until recently, mechanisms for establishing the composition of the inner nuclear membrane (INM) remained uncharted. Current findings uncover multiple pathways for trafficking of integral and peripheral INM proteins. A major route for INM protein transport occurs through the nuclear pore complexes (NPCs) with additional requirements for nuclear localization sequences, transport receptors, and Ran-GTP. Studies also reveal a putative NPC-independent vesicular pathway for NE trafficking. INM perturbations lead to changes in nuclear physiology highlighting the potential human disease impacts of continued NE discoveries.
Collapse
Affiliation(s)
- Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | |
Collapse
|
38
|
Chambers AL, Downs JA. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:229-61. [PMID: 22749148 DOI: 10.1016/b978-0-12-387665-2.00009-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.
Collapse
Affiliation(s)
- Anna L Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | | |
Collapse
|
39
|
Sarma NJ, Buford TD, Haley T, Barbara-Haley K, Santangelo GM, Willis KA. The nuclear pore complex mediates binding of the Mig1 repressor to target promoters. PLoS One 2011; 6:e27117. [PMID: 22110603 PMCID: PMC3215702 DOI: 10.1371/journal.pone.0027117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/11/2011] [Indexed: 12/22/2022] Open
Abstract
All eukaryotic cells alter their transcriptional program in response to the sugar glucose. In Saccharomyces cerevisiae, the best-studied downstream effector of this response is the glucose-regulated repressor Mig1. We show here that nuclear pore complexes also contribute to glucose-regulated gene expression. NPCs participate in glucose-responsive repression by physically interacting with Mig1 and mediating its function independently of nucleocytoplasmic transport. Surprisingly, despite its abundant presence in the nucleus of glucose-grown nup120Δ or nup133Δ cells, Mig1 has lost its ability to interact with target promoters. The glucose repression defect in the absence of these nuclear pore components therefore appears to result from the failure of Mig1 to access its consensus recognition sites in genomic DNA. We propose that the NPC contributes to both repression and activation at the level of transcription.
Collapse
Affiliation(s)
- Nayan J. Sarma
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Thomas D. Buford
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Terry Haley
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Kellie Barbara-Haley
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - George M. Santangelo
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Kristine A. Willis
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| |
Collapse
|
40
|
Georgiev P, Chlamydas S, Akhtar A. Drosophila dosage compensation: males are from Mars, females are from Venus. Fly (Austin) 2011; 5:147-54. [PMID: 21339706 DOI: 10.4161/fly.5.2.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation of X-linked genes is a phenomenon of concerted, chromosome-wide regulation of gene expression underpinned by sustained and tightly regulated histone modifications and chromatin remodeling, coupled with constrains of nuclear architecture. This elaborate process allows the accomplishment of regulated expression of genes on the single male X chromosome to levels comparable to those expressed from the two X chromosomes in females. The ribonucleoprotein Male Specific Lethal (MSL) complex is enriched on the male X chromosome and is intricately involved in this process in Drosophila melanogaster. In this review we discuss the recent advances that highlight the complexity lying behind regulation of gene expression by just two-fold.
Collapse
Affiliation(s)
- Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | |
Collapse
|
41
|
Yewdell WT, Colombi P, Makhnevych T, Lusk CP. Lumenal interactions in nuclear pore complex assembly and stability. Mol Biol Cell 2011; 22:1375-88. [PMID: 21346187 PMCID: PMC3078075 DOI: 10.1091/mbc.e10-06-0554] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A mechanism of nuclear pore complex assembly into intact nuclear envelopes remains elusive. We explore roles of conserved inner nuclear membrane proteins, Heh1p and Heh2p, in this process. The data support the existence of a lumenal bridge between Heh1p and the nucleoporin Pom152p, which might facilitate early nuclear pore complex assembly events. Nuclear pore complexes (NPCs) provide a gateway for the selective transport of macromolecules across the nuclear envelope (NE). Although we have a solid understanding of NPC composition and structure, we do not have a clear grasp of the mechanism of NPC assembly. Here, we demonstrate specific defects in nucleoporin distribution in strains lacking Heh1p and Heh2p—two conserved members of the LEM (Lap2, emerin, MAN1) family of integral inner nuclear membrane proteins. These effects on nucleoporin localization are likely of functional importance as we have defined specific genetic interaction networks between HEH1 and HEH2, and genes encoding nucleoporins in the membrane, inner, and outer ring complexes of the NPC. Interestingly, expression of a domain of Heh1p that resides in the NE lumen is sufficient to suppress both the nucleoporin mislocalization and growth defects in heh1Δpom34Δ strains. We further demonstrate a specific physical interaction between the Heh1p lumenal domain and the massive cadherin-like lumenal domain of the membrane nucleoporin Pom152p. These findings support a role for Heh1p in the assembly or stability of the NPC, potentially through the formation of a lumenal bridge with Pom152p.
Collapse
|
42
|
Arib G, Akhtar A. Multiple facets of nuclear periphery in gene expression control. Curr Opin Cell Biol 2011; 23:346-53. [PMID: 21242077 DOI: 10.1016/j.ceb.2010.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/26/2023]
Abstract
Nuclear pore complexes play a central role in controlling the traffic between the nucleus and the cytoplasm. Progress during the last decade has highlighted nuclear periphery components as novel players in chromatin organization, gene regulation, and genome stability. For instance, lamins associate with repressive chromatin while nuclear pores tend to associate with active chromatin. Interestingly, nucleoporins (Nups) act not only at the nuclear periphery but also in the nucleoplasm. Here we provide an overview of the latest findings and discuss the functional importance of nucleoporin association with specific genes, their role in transcriptional memory, the coupling of transcription and mRNA export, and genome integrity.
Collapse
Affiliation(s)
- Ghislaine Arib
- Max-Planck-Institute of Immunobiology und Epigenetics, Stübeweg 51,79108 Freiburg im Breisgau, Germany
| | | |
Collapse
|
43
|
Chadrin A, Hess B, San Roman M, Gatti X, Lombard B, Loew D, Barral Y, Palancade B, Doye V. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. ACTA ACUST UNITED AC 2010; 189:795-811. [PMID: 20498018 PMCID: PMC2878943 DOI: 10.1083/jcb.200910043] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A previously unrecognized pore membrane protein, Pom33, stabilizes the interface between the nuclear envelope and the NPC to facilitate NPC biogenesis and spatial organization. The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope–NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.
Collapse
Affiliation(s)
- Anne Chadrin
- Institut Jacques Monod, UMR 7592, Centre National de la Recherche Scientifique/Université Paris Diderot, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Depletion of a single nucleoporin, Nup107, induces apoptosis in eukaryotic cells. Mol Cell Biochem 2010; 343:21-5. [PMID: 20490895 DOI: 10.1007/s11010-010-0494-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/07/2010] [Indexed: 01/22/2023]
Abstract
Nuclear pores are large protein complexes that cross the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are about on average 2,000 nuclear pore complexes (NPCs) in the nuclear envelope of a vertebrate cell, but it varies depending on cell type and the stage in the life cycle. The proteins that make up the NPC are known as nucleoporins. In mammalian cells, Nup107 is the homolog of yeast Nup84p nucleoporin. Nup107 contains a leucine zipper motif in its carboxyl-terminal region and numerous kinase consensus sites, but does not contain FG repeats. Previously it was reported that NUP88 and NUP107 are over expressed in many types of cancers including colon, breast, prostrate, etc. In this study, we were interested in investigating the role of NUP107 in grade 4 Astrocytoma, i.e., Glioblastoma multiforme cultured cell line. We transfected human Astrocytoma cells with Nup107-specific siRNA duplexes. The level of mRNA for Nup107 was monitored by RT-PCR, 24, 48, and 72 h after the initial transfection. Nup107 mRNA was significantly diminished by 24 h after transfection and we took that as our incubation time. Next we studied the effect of this inhibition on cell viability. We did a Trypan Blue cell viability assay and it showed increased cell death in NUP107 transfected cells than untreated control. We further tried to analyze the nature of the cell death whether apoptotic or necrotic by doing apoptosis assays like ssDNA ELISA assay, Caspase-3, and Caspase-8 assays. All the assays showed that siRNA transfected cells are undergoing increased apoptosis than control.
Collapse
|