1
|
Dhakal P, Chaudhry SI, Signorelli R, Collins KM. Serotonin signals through postsynaptic Gαq, Trio RhoGEF, and diacylglycerol to promote Caenorhabditis elegans egg-laying circuit activity and behavior. Genetics 2022; 221:iyac084. [PMID: 35579369 PMCID: PMC9252285 DOI: 10.1093/genetics/iyac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Activated Gαq signals through phospholipase-Cβ and Trio, a Rho GTPase exchange factor (RhoGEF), but how these distinct effector pathways promote cellular responses to neurotransmitters like serotonin remains poorly understood. We used the egg-laying behavior circuit of Caenorhabditis elegans to determine whether phospholipase-Cβ and Trio mediate serotonin and Gαq signaling through independent or related biochemical pathways. Our genetic rescue experiments suggest that phospholipase-Cβ functions in neurons while Trio Rho GTPase exchange factor functions in both neurons and the postsynaptic vulval muscles. While Gαq, phospholipase-Cβ, and Trio Rho GTPase exchange factor mutants fail to lay eggs in response to serotonin, optogenetic stimulation of the serotonin-releasing HSN neurons restores egg laying only in phospholipase-Cβ mutants. Phospholipase-Cβ mutants showed vulval muscle Ca2+ transients while strong Gαq and Trio Rho GTPase exchange factor mutants had little or no vulval muscle Ca2+ activity. Treatment with phorbol 12-myristate 13-acetate that mimics 1,2-diacylglycerol, a product of PIP2 hydrolysis, rescued egg-laying circuit activity and behavior defects of Gαq signaling mutants, suggesting both phospholipase-C and Rho signaling promote synaptic transmission and egg laying via modulation of 1,2-diacylglycerol levels. 1,2-Diacylglycerol activates effectors including UNC-13; however, we find that phorbol esters, but not serotonin, stimulate egg laying in unc-13 and phospholipase-Cβ mutants. These results support a model where serotonin signaling through Gαq, phospholipase-Cβ, and UNC-13 promotes neurotransmitter release, and that serotonin also signals through Gαq, Trio Rho GTPase exchange factor, and an unidentified, phorbol 12-myristate 13-acetate-responsive effector to promote postsynaptic muscle excitability. Thus, the same neuromodulator serotonin can signal in distinct cells and effector pathways to coordinate activation of a motor behavior circuit.
Collapse
Affiliation(s)
- Pravat Dhakal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Sana I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
2
|
Kumar S, Olson AC, Koelle MR. The neural G protein Gαo tagged with GFP at an internal loop is functional in C. elegans. G3-GENES GENOMES GENETICS 2021; 11:6277897. [PMID: 34003969 PMCID: PMC8496287 DOI: 10.1093/g3journal/jkab167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
Gαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here, we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to compliment the already well-developed genetic analysis of Gαo signaling.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| | - Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
3
|
McManus CE, Reinke V. The Germline-Specific Factor OEF-1 Facilitates Coordinated Progression Through Germ Cell Development in Caenorhabditis elegans. Genetics 2018; 208:549-563. [PMID: 29167199 PMCID: PMC5788521 DOI: 10.1534/genetics.117.1123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
The purpose of germ cells is to ensure the faithful transmission of genetic material to the next generation. To develop into mature gametes, germ cells must pass through cell cycle checkpoints while maintaining totipotency and genomic integrity. How germ cells coordinate developmental events while simultaneously protecting their unique fate is not well understood. Here, we characterize a novel nuclear protein, Oocyte-Excluded Factor-1 (OEF-1), with highly specific germline expression in Caenorhabditis elegans OEF-1 is initially detected early in embryogenesis and is expressed in the nuclei of all germ cells during larval stages. In adults, OEF-1 expression abruptly decreases just prior to oocyte differentiation. In oef-1 mutants, the developmental progression of germ cells is accelerated, resulting in subtle defects at multiple stages of germ cell development. Lastly, OEF-1 is primarily associated with the bodies of germline-expressed genes, and as such is excluded from the X chromosome. We hypothesize that OEF-1 may regulate the rate of progression through germ cell development, providing insight into how these critical maturation events are coordinated.
Collapse
Affiliation(s)
- Catherine E McManus
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
4
|
Laurent P, Soltesz Z, Nelson GM, Chen C, Arellano-Carbajal F, Levy E, de Bono M. Decoding a neural circuit controlling global animal state in C. elegans. eLife 2015; 4. [PMID: 25760081 PMCID: PMC4440410 DOI: 10.7554/elife.04241] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023] Open
Abstract
Brains organize behavior and physiology to optimize the response to threats or opportunities. We dissect how 21% O2, an indicator of surface exposure, reprograms C. elegans' global state, inducing sustained locomotory arousal and altering expression of neuropeptides, metabolic enzymes, and other non-neural genes. The URX O2-sensing neurons drive arousal at 21% O2 by tonically activating the RMG interneurons. Stimulating RMG is sufficient to switch behavioral state. Ablating the ASH, ADL, or ASK sensory neurons connected to RMG by gap junctions does not disrupt arousal. However, disrupting cation currents in these neurons curtails RMG neurosecretion and arousal. RMG signals high O2 by peptidergic secretion. Neuropeptide reporters reveal neural circuit state, as neurosecretion stimulates neuropeptide expression. Neural imaging in unrestrained animals shows that URX and RMG encode O2 concentration rather than behavior, while the activity of downstream interneurons such as AVB and AIY reflect both O2 levels and the behavior being executed. DOI:http://dx.doi.org/10.7554/eLife.04241.001 From humans to worms, animals must respond appropriately to environmental challenges to survive. Starving animals must conserve energy while they seek food; animals that encounter a predator must fight or flee. These responses involve the animals re-programming their bodies and behavior, and, in humans, are thought to coincide with feelings or emotions such as ‘hunger’ and ‘fear’. Understanding these states in humans is difficult, but studies of simpler animals may provide some insights. The microscopic worm Caenorhabditis elegans offers a unique advantage to these studies because it has the most precisely described nervous system of any animal. The worm lives in rotting fruit, but it avoids the fruit's surface, perhaps because there is an increased risk of it drying out or being eaten by predators. Microbes that grow within the rotting fruit reduce the oxygen level below the 21% oxygen found in the surrounding air, and so one strategy that C. elegans uses to avoid surface exposure is to continuously monitor the oxygen concentration. If the worm senses that the oxygen level is approaching 21%, which suggests it is nearing the surface, it reverses and turns around. If it cannot find a lower-oxygen environment, the worm switches to continuous rapid movement until it locates such an environment, and adapts its body for surface exposure. Laurent, Soltesz et al. sought to understand the circuit of neurons that controls this switch. Monitoring gene expression in the worms revealed that specific oxygen-sensing neurons help generate the widespread changes that occur in the worm's body. These neurons also control the switch in the worm's behavior. Sensory neurons relay signals to downstream neurons that act on muscles to alter behavior. Neurons typically communicate with other neurons via specific connections; but neurons can also release signaling molecules, which act like ‘wireless’ signals and can affect many other cells. Laurent, Soltesz et al. showed that both kinds of signaling are needed to change the worm's behavior, and suggest that the release of signaling molecules may explain the widespread effects of 21% oxygen on the worm. Laurent, Soltesz et al. then monitored the activity of neurons in freely moving worms, and found that some neurons appear to encode and relay specific sensory information. Other neurons encode the behavior the animal is performing, and yet others can encode both kinds of information. To confirm which neurons control particular behavioral responses, Laurent, Soltesz et al. measured changes in the worm’s behavior after destroying or altering specific cells, or while they used light-based techniques to artificially excite or inhibit specific neurons. At a simple level the worm's response to 21% oxygen resembles the response of a mammal to a dangerous environment: both become more aroused, change how they respond to other sensory cues, and adapt both their bodies and behavior. As such, C. elegans provides a great model to explore at a small and accessible scale how changes in animals' states are generated. DOI:http://dx.doi.org/10.7554/eLife.04241.002
Collapse
Affiliation(s)
| | - Zoltan Soltesz
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Changchun Chen
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Emmanuel Levy
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
5
|
Masuho I, Xie K, Martemyanov KA. Macromolecular composition dictates receptor and G protein selectivity of regulator of G protein signaling (RGS) 7 and 9-2 protein complexes in living cells. J Biol Chem 2013; 288:25129-25142. [PMID: 23857581 DOI: 10.1074/jbc.m113.462283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.
Collapse
Affiliation(s)
- Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida 33410.
| |
Collapse
|
6
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. PLANT PHYSIOLOGY 2012; 160:624-37. [PMID: 22855937 PMCID: PMC3461544 DOI: 10.1104/pp.112.200519] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.
Collapse
|
8
|
Liapis E, Sandiford S, Wang Q, Gaidosh G, Motti D, Levay K, Slepak VZ. Subcellular localization of regulator of G protein signaling RGS7 complex in neurons and transfected cells. J Neurochem 2012; 122:568-81. [PMID: 22640015 DOI: 10.1111/j.1471-4159.2012.07811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.
Collapse
Affiliation(s)
- Evangelos Liapis
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Wani KA, Catanese M, Normantowicz R, Herd M, Maher KN, Chase DL. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons. PLoS One 2012; 7:e37831. [PMID: 22629462 PMCID: PMC3357403 DOI: 10.1371/journal.pone.0037831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.
Collapse
Affiliation(s)
- Khursheed A. Wani
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Mary Catanese
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Robyn Normantowicz
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Muriel Herd
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kathryn N. Maher
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Daniel L. Chase
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
AGS-3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G protein G αo. J Neurosci 2011; 31:11553-62. [PMID: 21832186 DOI: 10.1523/jneurosci.2072-11.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteins containing the G protein regulator (GPR) domain bind the major neural G protein Gα(o) in vitro. However, the biological functions of GPR proteins in neurons remain undefined, and based on the in vitro activities of GPR proteins it is unclear whether these proteins activate or inhibit G protein signaling in vivo. We found that the conserved GPR domain protein AGS-3 activates Gα(o) signaling in vivo to allow Caenorhabditis elegans to alter several behaviors after food deprivation, apparently so that the animals can more effectively seek food. AGS-3 undergoes a progressive change in its biochemical fractionation upon food deprivation, suggesting that effects of food deprivation are mediated by modifying this protein. We analyzed one C. elegans food-regulated behavior in depth; AGS-3 activates Gα(o) in the ASH chemosensory neurons to allow food-deprived animals to delay response to the aversive stimulus octanol. Genetic epistasis experiments show the following: (1) AGS-3 and the guanine nucleotide exchange factor RIC-8 act in ASH in a mutually dependent fashion to activate Gα(o); (2) this activation requires interaction of the GPR domains of AGS-3 with Gα(o); and (3) Gα(o)-GTP is ultimately the signaling molecule that acts in ASH to delay octanol response. These results identify a biological role for AGS-3 in response to food deprivation and indicate the mechanism for its activation of Gα(o) signaling in vivo.
Collapse
|
11
|
Porter MY, Xie K, Pozharski E, Koelle MR, Martemyanov KA. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins. J Biol Chem 2010; 285:41100-12. [PMID: 20959458 DOI: 10.1074/jbc.m110.163600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
12
|
Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. J Proteomics 2010; 73:2198-204. [PMID: 20546956 DOI: 10.1016/j.jprot.2010.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based proteomics is rapidly becoming an essential tool for biologists. One of the most common applications is identifying the components of protein complexes isolated by co-immunoprecipitation. In this review, we discuss the co-immunoprecipitation, mass spectrometry and data analysis techniques that have been used successfully to define protein complexes in C. elegans research. In this discussion, two strategies emerged. One approach is to use stringent biochemical purification methods and attempt to identify a small number of complex components with a high degree of certainty based on MS data. A second approach is to use less stringent purification and identification parameters, and ultimately test a longer list of potential binding partners in biological validation assays. This should provide a useful guide for biologists planning proteomic experiments.
Collapse
|