1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
3
|
Shan MM, Sun SC. The multiple roles of RAB GTPases in female and male meiosis. Hum Reprod Update 2021; 27:1013-1029. [PMID: 34227671 DOI: 10.1093/humupd/dmab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND RAB GTPases constitute the largest family of small GTPases and are found in all eukaryotes. RAB GTPases regulate components of the endomembrane system, the nucleus and the plasma membrane, and are involved in intracellular actin/tubulin-dependent vesicle movement, membrane fusion and cell growth in mitosis. OBJECTIVE AND RATIONALE RAB GTPases play multiple critical roles during both female and male meiosis. This review summarizes the progress made in our understanding of the role of RAB GTPases in female and male meiosis in different species. We also discuss the potential relationship between RAB GTPases and oocyte/sperm quality, which may help in understanding the mechanisms underlying oogenesis and spermatogenesis and potential genetic causes of infertility. SEARCH METHODS The PubMed database was searched for articles published between 1991 and 2020 using the following terms: 'RAB', 'RAB oocyte', 'RAB sperm' and 'RAB meiosis'. OUTCOMES An analysis of 126 relevant articles indicated that RAB GTPases are present in all eukaryotes, and ten subfamilies (almost 70 members) are expressed in human cells. The roles of 25 RAB proteins and orthologues in female meiosis and 12 in male meiosis have been reported. RAB proteins are essential for the accurate continuity of genetic material, successful fertilization and the normal growth of offspring. Distinct and crucial functions of RAB GTPases in meiosis have been reported. In oocytes, RAB GTPases are involved in spindle organization, kinetochore-microtubule attachment, chromosome alignment, actin filament-mediated spindle migration, cytokinesis, cell cycle and oocyte-embryo transition. RAB GTPases function in mitochondrial processes and Golgi-mediated vesicular transport during female meiosis, and are critical for cortical granule transport during fertilization and oocyte-embryo transition. In sperm, RAB GTPases are vital for cytoskeletal organization and successful cytokinesis, and are associated with Golgi-mediated acrosome formation, membrane trafficking and morphological changes of sperm cells, as well as the exocytosis-related acrosome reaction and zona reaction during fertilization. WIDER IMPLICATIONS Abnormal expression of RAB GTPases disrupts intracellular systems, which may induce diverse diseases. The roles of RAB proteins in female and male reproductive systems, thus, need to be considered. The mechanisms underlying the function of RAB GTPases and the binding specificity of their effectors during oogenesis, spermatogenesis and fertilization remain to be studied. This review should contribute to our understanding of the molecular mechanisms of oogenesis and spermatogenesis and potential genetic causes of infertility.
Collapse
Affiliation(s)
- Meng-Meng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Zheng H, Li L, Miao P, Wu C, Chen X, Yuan M, Fang T, Norvienyeku J, Li G, Zheng W, Wang Z, Zhou J. FgSec2A, a guanine nucleotide exchange factor of FgRab8, is important for polarized growth, pathogenicity and deoxynivalenol production in Fusarium graminearum. Environ Microbiol 2018; 20:3378-3392. [PMID: 30105886 DOI: 10.1111/1462-2920.14373] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Sec4/Rab8 is one of the well-studied members of the Rab GTPase family, previous studies have shown that Sec4/Rab8 crucially promotes the pathogenesis of phytopathogens, but the upstream regulators of Rab8 are still unknown. Here, we have identified two Sec2 homologues FgSec2A and FgSec2B in devastating fungal pathogen Fusarium graminearum and investigated their functions and interactions with FgRab8 by live-cell imaging, genetic and functional analyses. Yeast two-hybrid assay shows that FgSec2A specifically interacts with FgRab8DN(N123I) and itself. Importantly, FgSec2A is required for growth, conidiation, DON production and virulence of F. graminearum. Live-cell imaging shows that FgSec2A and FgSec2B are both localized to the tip region of hyphae and conidia. Both N-terminal region and Sec2 domain of FgSec2A are essential for its function, but not for localization, whereas the C-terminal region is important for its polarized localization. Furthermore, constitutively active FgRab8CA(Q69L) partially rescues the defects of ΔFgsec2A. Consistently, FgSec2A is required for the polarized localization of FgRab8. Finally, FgSec2A and FgSec2B show partial functions, but FgSec2A does not interact and co-localize with FgSec2B. Taken together, these results indicate that FgSec2A acts as a FgRab8 guanine nucleotide exchange factor and is necessary for polarized growth, DON production and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Huawei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Miao
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Congxian Wu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingyue Yuan
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tian Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Justice Norvienyeku
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Ocean Science, Minjiang University, Fuzhou, 350108, China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Niimi T, Nakamura T. The fission yeast SPB component Dms1 is required to initiate forespore membrane formation and maintain meiotic SPB components. PLoS One 2018; 13:e0197879. [PMID: 29813128 PMCID: PMC5973557 DOI: 10.1371/journal.pone.0197879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
The spindle pole body (SPB) plays a central role in spore plasma membrane formation in addition to its recognized role in microtubule organization. During meiosis, a biomembrane called the forespore membrane (FSM) is newly formed at the SPB. Although several SPB proteins essential for the initiation of FSM formation (meiotic SPB components) have been identified, the molecular mechanism is still unknown. Here, we report the isolation and functional characterization of Dms1 as a component of the SPB. We show that FSM formation does not initiate in dms1Δ cells. Dms1 protein is constitutively expressed throughout the life cycle and localizes to the SPB and the nuclear envelope. The predicted Dms1 protein has a transmembrane domain, which is required for correct localization at the SPB. Dms1 is essential for the proper localization of three meiotic SPB components, Spo15, Spo2, and Spo13, but these components do not affect localization of Dms1. Collectively, these results suggest that Dms1 anchors these meiotic SPB components to the SPB, thereby facilitating the initiation of FSM formation.
Collapse
Affiliation(s)
- Touko Niimi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
6
|
Suda Y, Tachikawa H, Inoue I, Kurita T, Saito C, Kurokawa K, Nakano A, Irie K. Activation of Rab GTPase Sec4 by its GEF Sec2 is required for prospore membrane formation during sporulation in yeast Saccharomyces cerevisiae. FEMS Yeast Res 2017; 18:4780275. [DOI: 10.1093/femsyr/fox095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/24/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yasuyuki Suda
- Faculty of medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Tachikawa
- Laboratory of Biochemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Inoue
- Laboratory of Biochemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomokazu Kurita
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Chieko Saito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Irie
- Faculty of medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
7
|
Abstract
Fission yeast Ypt2, an orthologue of the mammalian small GTPase Rab8, is responsible for post-Golgi membrane trafficking. During meiosis, Ypt2 localizes at the spindle pole body (SPB), where it regulates de novo biogenesis of the spore plasma membrane. Recruitment of Ypt2 to the SPB is dependent on its meiosis-specific GDP/GTP exchange factor (GEF), the SPB-resident protein Spo13. Here we have examined the SPB recruitment of Ypt2 by Spo13. The GEF activity of Spo13 was required, but not essential for recruitment. Furthermore, Ypt2 recruitment was regulated in a meiosis-specific manner and partially regulated by the nuclear Dbf2-related (NDR) kinase Sid2, indicating the existence of a novel regulatory mechanism for localization of Rab GTPases during meiosis.
Collapse
Affiliation(s)
- Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.,Department of Chemistry and Biochemistry, National Institute of Technology, Suzuka College, Suzuka, Mie, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
8
|
Yang HJ, Osakada H, Kojidani T, Haraguchi T, Hiraoka Y. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival. Biol Open 2017; 6:217-222. [PMID: 28011631 PMCID: PMC5312105 DOI: 10.1242/bio.022384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. Summary: Lipid droplets of yeast mother cells are shown to redistribute to their nascent spores by live-cell imaging analysis, suggesting that the lipid droplets are important for yeast spore survival.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroko Osakada
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan .,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
9
|
Imada K, Nakamura T. The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Mol Biol Cell 2016; 27:3317-3328. [PMID: 27630265 PMCID: PMC5170864 DOI: 10.1091/mbc.e16-03-0162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 11/24/2022] Open
Abstract
Two Rabs, Ypt3 and Ypt2, regulating the trafficking of Golgi-derived secretory vesicles have key roles in biogenesis of the spore plasma membrane in fission yeast. During sporulation, the Rabs and secretory vesicles relocalize at the meiotic spindle pole body, where spore plasma membrane formation subsequently initiates. During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood. Here a genetic screen for sporulation-deficient mutations identified Ypt3, a Rab-family small GTPase known to function in the exocytic pathway. The ypt3-ki8 mutant showed defects in both the initiation of FSM biogenesis and FSM expansion. We also show that a mutation in Ypt2, another Rab protein that may function in the same pathway as Ypt3, compromises the initiation of FSM formation. As meiosis proceeds, both GFP-Ypt3 and GFP-Ypt2 are observed at the SPB and then relocalize to the FSM. Their localizations at the SPB precede FSM formation and depend on the meiotic SPB component Spo13, a putative GDP/GTP exchange factor for Ypt2. Given that Spo13 is essential for initiating FSM formation, these results suggest that two exocytic Rabs, Ypt3 and Ypt2, regulate the initiation of FSM formation on the SPB in concert with Spo13.
Collapse
Affiliation(s)
- Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
10
|
Chiba S, Amagai Y, Homma Y, Fukuda M, Mizuno K. NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J 2013; 32:874-85. [PMID: 23435566 DOI: 10.1038/emboj.2013.32] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/31/2013] [Indexed: 01/14/2023] Open
Abstract
Primary cilia are antenna-like sensory organelles protruding from the plasma membrane. Defects in ciliogenesis cause diverse genetic disorders. NDR2 was identified as the causal gene for a canine ciliopathy, early retinal degeneration, but its role in ciliogenesis remains unknown. Ciliary membranes are generated by transport and fusion of Golgi-derived vesicles to the pericentrosome, a process requiring Rab11-mediated recruitment of Rabin8, a GDP-GTP exchange factor (GEF) for Rab8, and subsequent Rab8 activation and Rabin8 binding to Sec15, a component of the exocyst that mediates vesicle tethering. This study shows that NDR2 phosphorylates Rabin8 at Ser-272 and defects in this phosphorylation impair preciliary membrane assembly and ciliogenesis, resulting in accumulation of Rabin8-/Rab11-containing vesicles at the pericentrosome. Rabin8 binds to and colocalizes with GTP-bound Rab11 and phosphatidylserine (PS) on pericentrosomal vesicles. The phospho-mimetic S272E mutation of Rabin8 decreases affinity for PS but increases affinity for Sec15. These results suggest that NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by triggering the switch in binding specificity of Rabin8 from PS to Sec15, thereby promoting local activation of Rab8 and ciliary membrane formation.
Collapse
Affiliation(s)
- Shuhei Chiba
- Laboratory of Molecular Cell Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
11
|
Nakamura-Kubo M, Hirata A, Shimoda C, Nakamura T. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis. Mol Biol Cell 2011; 22:3442-55. [PMID: 21775631 PMCID: PMC3172268 DOI: 10.1091/mbc.e11-02-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/12/2022] Open
Abstract
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.
Collapse
Affiliation(s)
- Michiko Nakamura-Kubo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Mathieson EM, Suda Y, Nickas M, Snydsman B, Davis TN, Muller EGD, Neiman AM. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:3693-707. [PMID: 20826607 PMCID: PMC2965686 DOI: 10.1091/mbc.e10-07-0563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis II outer plaque (MOP) acts a vesicle tethering complex that is a site for de novo membrane formation. Novel mutants in a MOP protein reveal that interaction of vesicles with the MOP surface is required to recruit a second tethering complex, the exocyst, to the vesicles, suggesting a mechanism by which the MOP promotes vesicle fusion. During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|