1
|
Ren Q, Wang H, Zhao Y, Han Z, Xu H, Gao T, Nie X, Huang X. Expression levels of serine proteases, their homologs, and prophenoloxidase in the Eriocheir sinensis with hepatopancreatic necrosis syndrome (HPNS) and their expression regulation by Runt. FISH & SHELLFISH IMMUNOLOGY 2023:108816. [PMID: 37236553 DOI: 10.1016/j.fsi.2023.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
The occurrence of hepatopancreatic necrosis syndrome (HPNS) has seriously affected the sustainable development of Chinese mitten crab (Eriocheir sinensis) farming industry. Limited studies have focused on the immune responses in crabs with HPNS. Serine proteases (SPs) and SP homologues (SPHs) play important roles in the innate immunity of crustaceans. This study investigated the effects of HPNS on the expression levels of genes related to prophenoloxidase (proPO) activation system, and the relationship between Runt transcription factor and the transcriptions of these genes. Eight SPs and five SPHs (SPH1-4, Mas) were identified from E. sinensis. SPs contain a catalytic triad of "HDS", while SPHs lack a catalytic residue. SPs and SPHs all contain a conservative Tryp_SPc domain. Evolutionary analysis showed that EsSPs, EsSPHs, EsPO, and EsRunt were clustered with SPs, SPHs, POs, and Runts of other arthropods, respectively. In crabs with HPNS, the expression levels of six SPs (1, 3, 4, 6, 7, and 8), five SPHs, and PO were significantly upregulated in the hepatopancreas. The knockdown of EsRunt could evidently decrease the expression levels of four SPs (3, 4, 5 and 8), five SPHs (SPH1-4, Mas), and PO. Therefore, the occurrence of HPNS activates the proPO system. Furthermore, the expression levels of partial genes related to proPO system were regulated by Runt. The activation of innate immune system may be a strategy for crabs with HPNS to improve immunity and fight diseases. Our study provides a new understanding of the relationship between HPNS and innate immunity.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China
| | - Hongyu Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Tianheng Gao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
2
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
3
|
Kim YJ, Rhee K, Liu J, Jeammet S, Turner MA, Small SJ, Garcia HG. Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer. eLife 2022; 11:73395. [PMID: 36503705 PMCID: PMC9836395 DOI: 10.7554/elife.73395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
A challenge in quantitative biology is to predict output patterns of gene expression from knowledge of input transcription factor patterns and from the arrangement of binding sites for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic models could be used to infer parameters describing simple regulatory architectures that inform parameter-free predictions of more complex enhancers in the context of transcriptional repression by Runt in the early fruit fly embryo. By modulating the number and placement of Runt binding sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, we discovered that thermodynamic models call for higher-order cooperativity between multiple molecular players. This higher-order cooperativity captures the combinatorial complexity underlying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory architectures, highlighting the challenges in reaching a predictive understanding of transcriptional regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular nature.
Collapse
Affiliation(s)
- Yang Joon Kim
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Kaitlin Rhee
- Department of Chemical Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Liu
- Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Selene Jeammet
- Department of Biology, Ecole Polytechnique, Paris, France
| | - Meghan A Turner
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Stephen J Small
- Department of Biology, New York University, New York, United States
| | - Hernan G Garcia
- Chan Zuckerberg Biohub, San Francisco, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
4
|
Evidence That Runt Acts as a Counter-Repressor of Groucho During Drosophila melanogaster Primary Sex Determination. G3-GENES GENOMES GENETICS 2020; 10:2487-2496. [PMID: 32457096 PMCID: PMC7341146 DOI: 10.1534/g3.120.401384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Runx proteins are bifunctional transcription factors that both repress and activate transcription in animal cells. Typically, Runx proteins work in concert with other transcriptional regulators, including co-activators and co-repressors to mediate their biological effects. In Drosophila melanogaster the archetypal Runx protein, Runt, functions in numerous processes including segmentation, neurogenesis and sex determination. During primary sex determination Runt acts as one of four X-linked signal element (XSE) proteins that direct female-specific activation of the establishment promoter (Pe) of the master regulatory gene Sex-lethal (Sxl). Successful activation of SxlPe requires that the XSE proteins overcome the repressive effects of maternally deposited Groucho (Gro), a potent co-repressor of the Gro/TLE family. Runx proteins, including Runt, contain a C-terminal peptide, VWRPY, known to bind to Gro/TLE proteins to mediate transcriptional repression. We show that Runt’s VWRPY co-repressor-interaction domain is needed for Runt to activate SxlPe. Deletion of the Gro-interaction domain eliminates Runt-ability to activate SxlPe, whereas replacement with a higher affinity, VWRPW, sequence promotes Runt-mediated transcription. This suggests that Runt may activate SxlPe by antagonizing Gro function, a conclusion consistent with earlier findings that Runt is needed for Sxl expression only in embryonic regions with high Gro activity. Surprisingly we found that Runt is not required for the initial activation of SxlPe. Instead, Runt is needed to keep SxlPe active during the subsequent period of high-level Sxl transcription suggesting that Runt helps amplify the difference between female and male XSE signals by counter-repressing Gro in female, but not in male, embryos.
Collapse
|
5
|
Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, Song Z, Walters JR, Zhang W, Li F, Chen X. The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 2018; 19:420. [PMID: 29848290 PMCID: PMC5977540 DOI: 10.1186/s12864-018-4783-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host's immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host's immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. RESULTS We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. CONCLUSIONS The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion.
Collapse
Affiliation(s)
- Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Kun Lang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Qiming Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dianhao Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yipei Dong
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jiapeng Luo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Zhenkun Song
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - James R. Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66046 USA
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Xuexin Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
6
|
Chan SKK, Cerda-Moya G, Stojnic R, Millen K, Fischer B, Fexova S, Skalska L, Gomez-Lamarca M, Pillidge Z, Russell S, Bray SJ. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet 2017; 13:e1007096. [PMID: 29155828 PMCID: PMC5714389 DOI: 10.1371/journal.pgen.1007096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved. The communication between cells that occurs during development, as well as in disease contexts, involves a small number of signalling pathways of which the Notch pathway is one. One outstanding question is how these pathways can bring about different gene responses in different contexts. As gene expression is co-ordinated by a mixture of activators and repressors, we set out to investigate whether the distribution of repressors across the genome is important in shaping whether genes are able to respond to Notch activity. Our results from analyzing the binding profile of two repressors, Hairless and SMRTER, show that, in many cases, they are not essential for preventing a gene from responding. Instead they are deployed at a limited number of genetic loci where they gate the response, helping to set a threshold for gene activation. Perturbations to their function lead to enhanced gene expression in limited territories rather than to new programmes of gene expression. Their main role therefore is to restrict the time or levels of signal that a gene needs to receive before it will respond.
Collapse
Affiliation(s)
- Stephen K. K. Chan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Silvie Fexova
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lenka Skalska
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Praxenthaler H, Nagel AC, Schulz A, Zimmermann M, Meier M, Schmid H, Preiss A, Maier D. Hairless-binding deficient Suppressor of Hairless alleles reveal Su(H) protein levels are dependent on complex formation with Hairless. PLoS Genet 2017; 13:e1006774. [PMID: 28475577 PMCID: PMC5438185 DOI: 10.1371/journal.pgen.1006774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/19/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices during metazoan development are driven by the highly conserved Notch signalling pathway. Notch receptor activation results in release of the Notch intracellular domain (NICD) that acts as transcriptional co-activator of the DNA-binding protein CSL. In the absence of signal, a repressor complex consisting of CSL bound to co-repressors silences Notch target genes. The Drosophila repressor complex contains the fly CSL orthologue Suppressor of Hairless [Su(H)] and Hairless (H). The Su(H)-H crystal structure revealed a large conformational change within Su(H) upon H binding, precluding interactions with NICD. Based on the structure, several sites in Su(H) and H were determined to specifically engage in complex formation. In particular, three mutations in Su(H) were identified that affect interactions with the repressor H but not the activator NICD. To analyse the effects these mutants have on normal fly development, we introduced these mutations into the native Su(H) locus by genome engineering. We show that the three H-binding deficient Su(H) alleles behave similarly. As these mutants lack the ability to form the repressor complex, Notch signalling activity is strongly increased in homozygotes, comparable to a complete loss of H activity. Unexpectedly, we find that the abundance of the three mutant Su(H) protein variants is altered, as is that of wild type Su(H) protein in the absence of H protein. In the presence of NICD, however, Su(H) mutant protein persists. Apparently, Su(H) protein levels depend on the interactions with H as well as with NICD. Based on these results, we propose that in vivo levels of Su(H) protein are stabilised by interactions with transcription-regulator complexes.
Collapse
Affiliation(s)
- Heiko Praxenthaler
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Adriana Schulz
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Markus Meier
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Anette Preiss
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
| | - Dieter Maier
- Institute of Genetics (240), University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
8
|
Nagel AC, Szawinski J, Zimmermann M, Preiss A. Drosophila Cyclin G Is a Regulator of the Notch Signalling Pathway during Wing Development. PLoS One 2016; 11:e0151477. [PMID: 26963612 PMCID: PMC4786218 DOI: 10.1371/journal.pone.0151477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/29/2016] [Indexed: 01/24/2023] Open
Abstract
Notch signalling regulates a multitude of differentiation processes during Drosophila development. For example, Notch activity is required for proper wing vein differentiation which is hampered in mutants of either the receptor Notch, the ligand Delta or the antagonist Hairless. Moreover, the Notch pathway is involved in several aspects of Drosophila oogenesis as well. We have identified Drosophila Cyclin G (CycG) as a molecular interaction partner of Hairless, the major antagonist in the Notch signalling pathway, in vitro and in vivo. Loss of CycG was shown before to cause female sterility and to disturb the architecture of the egg shell. Nevertheless, Notch dependent processes during oogenesis appeared largely unaffected in cycG mutant egg chambers. Loss of CycG modified the dominant wing phenotypes of Notch, Delta and Hairless mutants. Whereas the Notch loss of function phenotype was ameliorated by a loss of CycG, the phenotypes of either Notch gain of function or of Delta or Hairless loss of function were enhanced. In contrast, loss of CycG had only a minor effect on the wing vein phenotype of mutants affecting the EGFR signalling pathway emphasizing the specificity of the interaction of CycG and Notch pathway members.
Collapse
Affiliation(s)
- Anja C. Nagel
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Jutta Szawinski
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mirjam Zimmermann
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institut für Genetik, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
- * E-mail:
| |
Collapse
|
9
|
Praxenthaler H, Smylla TK, Nagel AC, Preiss A, Maier D. Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster. PLoS One 2015; 10:e0140007. [PMID: 26448463 PMCID: PMC4598140 DOI: 10.1371/journal.pone.0140007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Hairless (H) is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H)] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele HattP, reintroduced a wild type H genomic and a cDNA-construct (Hgwt, Hcwt) as well as two constructs encoding H proteins defective of Su(H) binding (HLD, HiD). Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N5419) and Delta (DlB2) mutants were addressed. Overall, phenotypes were largely as expected: both HLD and HiD were similar to the HattP null allele, indicating that most of H activity requires the binding of Su(H). Both rescue constructs Hgwt and Hcwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably Hcwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, Hgwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.
Collapse
Affiliation(s)
- Heiko Praxenthaler
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599, Stuttgart, Germany
| | - Thomas K. Smylla
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599, Stuttgart, Germany
| | - Anja C. Nagel
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599, Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599, Stuttgart, Germany
| | - Dieter Maier
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
10
|
Mannervik M. Control of Drosophila embryo patterning by transcriptional co-regulators. Exp Cell Res 2013; 321:47-57. [PMID: 24157250 DOI: 10.1016/j.yexcr.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
A combination of broadly expressed transcriptional activators and spatially restricted repressors are used to pattern embryos into cells of different fate. Transcriptional co-regulators are essential mediators of transcription factor function, and contribute to selective transcriptional responses in embryo development. A two step mechanism of transcriptional regulation is discussed, where remodeling of chromatin is initially required, followed by stimulation of recruitment or release of RNA polymerase from the promoter. Transcriptional co-regulators are essential for both of these steps. In particular, most co-activators are associated with histone acetylation and co-repressors with histone deacetylation. In the early Drosophila embryo, genome-wide studies have shown that the CBP co-activator has a preference for associating with some transcription factors and regulatory regions. The Groucho, CtBP, Ebi, Atrophin and Brakeless co-repressors are selectively used to limit zygotic gene expression. New findings are summarized which show that different co-repressors are often utilized by a single repressor, that the context in which a co-repressor is recruited to DNA can affect its activity, and that co-regulators may switch from co-repressors to co-activators and vice versa. The possibility that co-regulator activity is regulated and plays an instructive role in development is discussed as well. This review highlights how findings in Drosophila embryos have contributed to the understanding of transcriptional regulation in eukaryotes as well as to mechanisms of animal embryo patterning.
Collapse
Affiliation(s)
- Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Arrheniuslaboratories E3, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Green J, Akam M. Evolution of the pair rule gene network: Insights from a centipede. Dev Biol 2013; 382:235-45. [PMID: 23810931 PMCID: PMC3807789 DOI: 10.1016/j.ydbio.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/05/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism.
Collapse
Affiliation(s)
- Jack Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK.
| | | |
Collapse
|