1
|
Jahed Z, Domkam N, Ornowski J, Yerima G, Mofrad MRK. Molecular models of LINC complex assembly at the nuclear envelope. J Cell Sci 2021; 134:269219. [PMID: 34152389 DOI: 10.1242/jcs.258194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope. Herein, we present a review of recent studies over the past few years that have shed light on the mechanisms of SUN-KASH interactions, their higher order assembly, and the molecular mechanisms of force transfer across these complexes.
Collapse
Affiliation(s)
- Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA 92039, USA
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
4
|
Groves NR, McKenna JF, Evans DE, Graumann K, Meier I. A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants. J Cell Sci 2019; 132:jcs226134. [PMID: 30858196 DOI: 10.1242/jcs.226134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Distribution of Proteins at the Inner Nuclear Membrane Is Regulated by the Asi1 E3 Ligase in Saccharomyces cerevisiae. Genetics 2019; 211:1269-1282. [PMID: 30709848 PMCID: PMC6456303 DOI: 10.1534/genetics.119.301911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Inner nuclear membrane (INM) protein composition regulates nuclear function, affecting processes such as gene expression, chromosome organization, nuclear shape, and stability. Mechanisms that drive changes in the INM proteome are poorly understood, in part because it is difficult to definitively assay INM composition rigorously and systematically. Using a split-GFP complementation system to detect INM access, we examined the distribution of all C-terminally tagged Saccharomyces cerevisiae membrane proteins in wild-type cells and in mutants affecting protein quality control pathways, such as INM-associated degradation (INMAD), ER-associated degradation, and vacuolar proteolysis. Deletion of the E3 ligase Asi1 had the most specific effect on the INM compared to mutants in vacuolar or ER-associated degradation pathways, consistent with a role for Asi1 in the INMAD pathway. Our data suggest that Asi1 not only removes mistargeted proteins at the INM, but also controls the levels and distribution of native INM components, such as the membrane nucleoporin Pom33. Interestingly, loss of Asi1 does not affect Pom33 protein levels but instead alters Pom33 distribution in the nuclear envelope through Pom33 ubiquitination, which drives INM redistribution. Taken together, our data demonstrate that the Asi1 E3 ligase has a novel function in INM protein regulation in addition to protein turnover.
Collapse
|
6
|
Majumder S, Willey PT, DeNies MS, Liu AP, Luxton GWG. A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. J Cell Sci 2018; 132:jcs.219451. [DOI: 10.1242/jcs.219451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.
Collapse
Affiliation(s)
- Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Patrick T. Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell S. DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Lawrence KS, Tapley EC, Cruz VE, Li Q, Aung K, Hart KC, Schwartz TU, Starr DA, Engebrecht J. LINC complexes promote homologous recombination in part through inhibition of nonhomologous end joining. J Cell Biol 2016; 215:801-821. [PMID: 27956467 PMCID: PMC5166498 DOI: 10.1083/jcb.201604112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023] Open
Abstract
The Caenorhabditis elegans SUN domain protein, UNC-84, functions in nuclear migration and anchorage in the soma. We discovered a novel role for UNC-84 in DNA damage repair and meiotic recombination. Loss of UNC-84 leads to defects in the loading and disassembly of the recombinase RAD-51. Similar to mutations in Fanconi anemia (FA) genes, unc-84 mutants and human cells depleted of Sun-1 are sensitive to DNA cross-linking agents, and sensitivity is rescued by the inactivation of nonhomologous end joining (NHEJ). UNC-84 also recruits FA nuclease FAN-1 to the nucleoplasm, suggesting that UNC-84 both alters the extent of repair by NHEJ and promotes the processing of cross-links by FAN-1. UNC-84 interacts with the KASH protein ZYG-12 for DNA damage repair. Furthermore, the microtubule network and interaction with the nucleoskeleton are important for repair, suggesting that a functional linker of nucleoskeleton and cytoskeleton (LINC) complex is required. We propose that LINC complexes serve a conserved role in DNA repair through both the inhibition of NHEJ and the promotion of homologous recombination at sites of chromosomal breaks.
Collapse
Affiliation(s)
- Katherine S Lawrence
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Qianyan Li
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kayla Aung
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Kevin C Hart
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel A Starr
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology; Biochemistry, Molecular Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616
| |
Collapse
|
8
|
Daryabeigi A, Woglar A, Baudrimont A, Silva N, Paouneskou D, Vesely C, Rauter M, Penkner A, Jantsch M, Jantsch V. Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line. Genetics 2016; 203:733-48. [PMID: 27098914 PMCID: PMC4896190 DOI: 10.1534/genetics.116.188094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence.
Collapse
Affiliation(s)
- Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Cornelia Vesely
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, 1090, Austria
| | - Manuel Rauter
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Alexandra Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| | - Michael Jantsch
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, 1090, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Austria
| |
Collapse
|
9
|
Soheilypour M, Peyro M, Jahed Z, Mofrad MRK. On the Nuclear Pore Complex and Its Roles in Nucleo-Cytoskeletal Coupling and Mechanobiology. Cell Mol Bioeng 2016. [DOI: 10.1007/s12195-016-0443-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
10
|
Jahed Z, Soheilypour M, Peyro M, Mofrad MRK. The LINC and NPC relationship – it's complicated! J Cell Sci 2016; 129:3219-29. [DOI: 10.1242/jcs.184184] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The genetic information of eukaryotic cells is enclosed within a double-layered nuclear envelope, which comprises an inner and outer nuclear membrane. Several transmembrane proteins locate to the nuclear envelope; however, only two integral protein complexes span the nuclear envelope and connect the inside of the nucleus to the cytoplasm. The nuclear pore complex (NPC) acts as a gateway for molecular exchange between the interior of the nucleus and the cytoplasm, whereas so-called LINC complexes physically link the nucleoskeleton and the cytoskeleton. In this Commentary, we will discuss recent studies that have established direct functional associations between these two complexes. The assembly of NPCs and their even distribution throughout the nuclear envelope is dependent on components of the LINC complex. Additionally, LINC complex formation is dependent on the successful localization of inner nuclear membrane components of LINC complexes and their transport through the NPC. Furthermore, the architecture of the nuclear envelope depends on both protein complexes. Finally, we will present recent evidence showing that LINC complexes can affect nucleo-cytoplasmic transport through the NPC, further highlighting the importance of understanding the associations of these essential complexes at the nuclear envelope.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Abstract
The nuclear envelope consists of 2 membranes separated by 30–50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.
Collapse
Affiliation(s)
- Natalie E Cain
- a Department of Molecular and Cellular Biology ; University of California Davis ; Davis , CA USA
| | | |
Collapse
|
12
|
Diaz-Muñoz G, Harchar TA, Lai TP, Shen KF, Hopper AK. Requirement of the spindle pole body for targeting and/or tethering proteins to the inner nuclear membrane. Nucleus 2015; 5:352-66. [PMID: 25482124 PMCID: PMC4152349 DOI: 10.4161/nucl.29793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Appropriate targeting of inner nuclear membrane (INM) proteins is important for nuclear function and architecture. To gain new insights into the mechanism(s) for targeting and/or tethering peripherally associated proteins to the INM, we screened a collection of temperature sensitive S. cerevisiae yeast mutants for defects in INM location of the peripheral protein, Trm1-II-GFP. We uncovered numerous genes encoding components of the Spindle Pole Body (SPB), the yeast centrosome. SPB alterations affect the localization of both an integral (Heh2) and a peripheral INM protein (Trm1-II-GFP), but not a nucleoplasmic protein (Pus1). In wild-type cells Trm1-II-GFP is evenly distributed around the INM, but in SPB mutants, Trm1-II-GFP mislocalizes as a spot(s) near ER-nucleus junctions, perhaps its initial contact site with the nuclear envelope. Employing live cell imaging over time in a microfluidic perfusion system to study protein dynamics, we show that both Trm1-II-GFP INM targeting and maintenance depend upon the SPB. We propose a novel targeting and/or tethering model for a peripherally associated INM protein that combines mechanisms of both integral and soluble nuclear proteins, and describe a role of the SPB in nuclear envelope dynamics that affects this process.
Collapse
Affiliation(s)
- Greetchen Diaz-Muñoz
- a Molecular, Cellular and Developmental Biology Interdisciplinary Program; The Ohio State University; Columbus, OH USA
| | | | | | | | | |
Collapse
|
13
|
Kralt A, Jagalur NB, van den Boom V, Lokareddy RK, Steen A, Cingolani G, Fornerod M, Veenhoff LM. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins. Mol Biol Cell 2015; 26:3301-12. [PMID: 26179916 PMCID: PMC4569319 DOI: 10.1091/mbc.e15-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
This study examines whether active transport to the inner nuclear membrane, as shown for yeast membrane proteins Heh1 and Heh2, is conserved in metazoans. In support of this, the nuclear localization signal of metazoan Pom121 shares biochemical, structural, and functional properties with those of Heh1 and Heh2, and a Heh2-derived reporter protein targets to the inner membrane in Hek293T cells. Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins.
Collapse
Affiliation(s)
- Annemarie Kralt
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Noorjahan B Jagalur
- Departments of Biochemistry and Pediatric Oncology, Erasmus MC/Sophia, 3015 CN Rotterdam, Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, Netherlands
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maarten Fornerod
- Departments of Biochemistry and Pediatric Oncology, Erasmus MC/Sophia, 3015 CN Rotterdam, Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands )
| |
Collapse
|
14
|
Ungricht R, Klann M, Horvath P, Kutay U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol 2015; 209:687-703. [PMID: 26056139 PMCID: PMC4460150 DOI: 10.1083/jcb.201409127] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/04/2015] [Indexed: 01/07/2023] Open
Abstract
Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2β as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention-based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo.
Collapse
Affiliation(s)
- Rosemarie Ungricht
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland Molecular Life Sciences PhD Program, CH-8057 Zurich, Switzerland
| | - Michael Klann
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Peter Horvath
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
15
|
Lokareddy RK, Hapsari RA, van Rheenen M, Pumroy RA, Bhardwaj A, Steen A, Veenhoff LM, Cingolani G. Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Heh1 and Heh2. Structure 2015; 23:1305-1316. [PMID: 26051712 DOI: 10.1016/j.str.2015.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
Targeting of ER-synthesized membrane proteins to the inner nuclear membrane (INM) has long been explained by the diffusion-retention model. However, several INM proteins contain non-classical nuclear localization signal (NLS) sequences, which, in a few instances, have been shown to promote importin α/β- and Ran-dependent translocation to the INM. Here, using structural and biochemical methods, we show that yeast INM proteins Heh2 and Src1/Heh1 contain bipartite import sequences that associate intimately with the minor NLS-binding pocket of yeast importin α and unlike classical NLSs efficiently displace the IBB domain in the absence of importin β. In vivo, the intimate interactions at the minor NLS-binding pocket make the h2NLS highly efficient at recruiting importin α at the ER and drive INM localization of endogenous Heh2. Thus, h1/h2NLSs delineate a novel class of super-potent, IBB-like membrane protein NLSs, distinct from classical NLSs found in soluble cargos and of general interest in biology.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Rizqiya A Hapsari
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Mathilde van Rheenen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ruth A Pumroy
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anshul Bhardwaj
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10 Street, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Ungricht R, Kutay U. Establishment of NE asymmetry—targeting of membrane proteins to the inner nuclear membrane. Curr Opin Cell Biol 2015; 34:135-41. [DOI: 10.1016/j.ceb.2015.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/18/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
|
17
|
Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS One 2014; 9:e115571. [PMID: 25535984 PMCID: PMC4275242 DOI: 10.1371/journal.pone.0115571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023] Open
Abstract
Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.
Collapse
|
18
|
Graumann K, Vanrobays E, Tutois S, Probst AV, Evans DE, Tatout C. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6499-512. [PMID: 25217773 DOI: 10.1093/jxb/eru368] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
SUN-domain proteins belong to a gene family including classical Cter-SUN and mid-SUN subfamilies differentiated by the position of the SUN domain within the protein. Although present in animal and plant species, mid-SUN proteins have so far remained poorly described. Here, we used a combination of genetics, yeast two-hybrid and in planta transient expression methods to better characterize the SUN family in Arabidopsis thaliana. First, we validated the mid-SUN protein subfamily as a monophyletic group conserved from yeast to plant. Arabidopsis Cter-SUN (AtSUN1 and AtSUN2) and mid-SUN (AtSUN3 and AtSUN4) proteins expressed as fluorescent protein fusions are membrane-associated and localize to the nuclear envelope (NE) and endoplasmic reticulum. However, only the Cter-SUN subfamily is enriched at the NE. We investigated interactions in and between members of the two subfamilies and identified the coiled-coil domain as necessary for mediating interactions. The functional significance of the mid-SUN subfamily was further confirmed in mutant plants as essential for early seed development and involved in nuclear morphology. Finally, we demonstrated that both subfamilies interact with the KASH domain of AtWIP1 and identified a new root-specific KASH-domain protein, AtTIK. AtTIK localizes to the NE and affects nuclear morphology. Our study indicates that Arabidopsis Cter-SUN and mid-SUN proteins are involved in a complex protein network at the nuclear membranes, reminiscent of the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex found in other kingdoms.
Collapse
Affiliation(s)
- Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Emmanuel Vanrobays
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - Sylvie Tutois
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - Aline V Probst
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Christophe Tatout
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| |
Collapse
|
19
|
Meinema AC, Poolman B, Veenhoff LM. The transport of integral membrane proteins across the nuclear pore complex. Nucleus 2014; 3:322-9. [DOI: 10.4161/nucl.20439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
20
|
Bone CR, Tapley EC, Gorjánácz M, Starr DA. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Mol Biol Cell 2014; 25:2853-65. [PMID: 25057012 PMCID: PMC4161519 DOI: 10.1091/mbc.e14-05-0971] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleoplasmic domain of the Caenorhabditis elegans SUN protein UNC-84 interacts with lamin. If this interaction is disrupted, a partial failure in nuclear migration occurs. Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Mátyás Gorjánácz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
21
|
Cain NE, Tapley EC, McDonald KL, Cain BM, Starr DA. The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. ACTA ACUST UNITED AC 2014; 206:163-72. [PMID: 25023515 PMCID: PMC4107780 DOI: 10.1083/jcb.201405081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUN-KASH bridges that connect the nucleoskeleton to the cytoskeleton are only required to maintain nuclear envelope spacing in cells subjected to increased mechanical forces, such as muscle cells. The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Benjamin M Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Daniel A Starr
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Laba JK, Steen A, Veenhoff LM. Traffic to the inner membrane of the nuclear envelope. Curr Opin Cell Biol 2014; 28:36-45. [DOI: 10.1016/j.ceb.2014.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
|
23
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
24
|
|
25
|
Katta SS, Smoyer CJ, Jaspersen SL. Destination: inner nuclear membrane. Trends Cell Biol 2013; 24:221-9. [PMID: 24268652 DOI: 10.1016/j.tcb.2013.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/25/2022]
Abstract
The inner nuclear membrane (INM) of eukaryotic cells is enriched in proteins that are required for nuclear structure, chromosome organization, DNA repair, and transcriptional control. Mislocalization of INM proteins is observed in a wide spectrum of human diseases; however, the mechanism by which INM proteins reach their final destination is poorly understood. In this review we discuss how investigating INM composition, dissecting targeting pathways of conserved INM proteins in multiple systems and analyzing the nuclear transport of viruses and signaling complexes have broadened our knowledge of INM transport to include both nuclear pore complex-dependent and -independent pathways. The study of these INM targeting pathways is important to understanding nuclear organization and in both normal and diseased cells.
Collapse
Affiliation(s)
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Structural insights into LINC complexes. Curr Opin Struct Biol 2013; 23:285-91. [PMID: 23597672 DOI: 10.1016/j.sbi.2013.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/21/2013] [Accepted: 03/23/2013] [Indexed: 11/21/2022]
Abstract
Communication between nucleus and cytoplasm extends past molecular exchange and critically includes mechanical wiring. Cytoskeleton and nucleoskeleton are connected via molecular tethers that span the nuclear envelope. Sad1, UNC84 (SUN)-domain proteins spanning the inner nuclear membrane and Klarsicht, ANC-1 and SYNE/Nesprin-1 and -2 Homology (KASH)-peptide bearing proteins residing in the outer nuclear membrane directly bind and constitute the core of the LInkers of Nucleoskeleton and Cytoskeleton (LINC) complex. These connections appear critical for a growing number of biological processes and aberrations are implicated in a host of diverse diseases, including muscular dystrophies, cardiomyopathies, and premature aging. We discuss recent developments in this vibrant research area, particularly in context of first structural insights into LINC complexes reported in the past year.
Collapse
|
27
|
Nussbaum-Krammer CI, Park KW, Li L, Melki R, Morimoto RI. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003351. [PMID: 23555277 PMCID: PMC3610634 DOI: 10.1371/journal.pgen.1003351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023] Open
Abstract
Prion proteins can adopt self-propagating alternative conformations that account for the infectious nature of transmissible spongiform encephalopathies (TSEs) and the epigenetic inheritance of certain traits in yeast. Recent evidence suggests a similar propagation of misfolded proteins in the spreading of pathology of neurodegenerative diseases including Alzheimer's or Parkinson's disease. Currently there is only a limited number of animal model systems available to study the mechanisms that underlie the cell-to-cell transmission of aggregation-prone proteins. Here, we have established a new metazoan model in Caenorhabditis elegans expressing the prion domain NM of the cytosolic yeast prion protein Sup35, in which aggregation and toxicity are dependent upon the length of oligopeptide repeats in the glutamine/asparagine (Q/N)-rich N-terminus. NM forms multiple classes of highly toxic aggregate species and co-localizes to autophagy-related vesicles that transport the prion domain from the site of expression to adjacent tissues. This is associated with a profound cell autonomous and cell non-autonomous disruption of mitochondrial integrity, embryonic and larval arrest, developmental delay, widespread tissue defects, and loss of organismal proteostasis. Our results reveal that the Sup35 prion domain exhibits prion-like properties when expressed in the multicellular organism C. elegans and adapts to different requirements for propagation that involve the autophagy-lysosome pathway to transmit cytosolic aggregation-prone proteins between tissues. Alzheimer's, Parkinson's, Huntington's, frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and prion diseases are all age-related, fatal neurodegenerative disorders. Hallmarks of these diseases include the expression of toxic protein species. The ability to spread and infect naive cells was thought to be limited to prions but has recently been observed for other disease-linked protein aggregates in tissue culture cells and transgenic mice. The underlying cellular pathways of this cell-to-cell transmission, however, remain elusive. We have developed a new prion model in the roundworm Caenorhabditis elegans and show that the appearance of aggregate species is associated with cellular toxicity, not only in the expressing cell but as well as in adjacent tissues. We monitored in real time the spreading of prion domains by autophagy-derived lysosomal vesicles from cell-to-cell. Given that autophagy and lysosomal degradation have a role in several neurodegenerative diseases, this cellular pathway might be the basis of amyloid infectivity in general.
Collapse
Affiliation(s)
- Carmen I. Nussbaum-Krammer
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Kyung-Won Park
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Meinema AC, Poolman B, Veenhoff LM. Quantitative Analysis of Membrane Protein Transport Across the Nuclear Pore Complex. Traffic 2013; 14:487-501. [DOI: 10.1111/tra.12048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Anne C. Meinema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4; 9747 AG; Groningen; the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4; 9747 AG; Groningen; the Netherlands
| | | |
Collapse
|
29
|
Mapping of sequences in Pseudorabies virus pUL34 that are required for formation and function of the nuclear egress complex. J Virol 2013; 87:4475-85. [PMID: 23388710 DOI: 10.1128/jvi.00021-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nuclear egress complex (NEC) is required for efficient translocation of newly synthesized herpesvirus nucleocapsids from the nucleus to the cytosol. It consists of the type II membrane protein pUL34 which interacts with pUL31 at the inner nuclear membrane (INM). To map regions within pUL34 required for nuclear membrane targeting and pUL31 interaction, we constructed deletion/substitution mutations. Previously, we showed that 50 C-terminal amino acids (aa) of pseudorabies virus (PrV) pUL34, including the transmembrane domain, could be functionally replaced by cellular lamina-associated polypeptide 2β (Lap2β) sequences. In contrast, replacement of the C-terminal 100 aa abrogated complementation but not pUL31 interaction. To further delineate essential sequences within this region, C-terminal pUL34 truncations of 60, 70, 80, 85, and 90 aa fused to Lap2β sequences were generated. While truncations up to 85 aa were functional, deletion of the C-terminal 90 aa abrogated function, which indicates that the important region is located between aa 171 and 176. Amino acids 173 to 175 represent RQR, a motif suggested to mediate INM targeting. Mutagenesis to RQG revealed that the mutant protein exhibited pronounced Golgi localization, but a fraction still reached the INM. Deletion mutations in the N-terminal domain of pUL34 demonstrated that absence of the first 4 aa was tolerated, while removal of 9 or more residues resulted in a nonfunctional protein. In addition, mutation of three conserved cysteines did not abrogate pUL34 function, whereas alteration of a conserved glutamine/tyrosine sequence yielded a nonfunctional protein.
Collapse
|
30
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
31
|
toca-1 is in a novel pathway that functions in parallel with a SUN-KASH nuclear envelope bridge to move nuclei in Caenorhabditis elegans. Genetics 2012; 193:187-200. [PMID: 23150597 DOI: 10.1534/genetics.112.146589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Moving the nucleus to an intracellular location is critical to many fundamental cell and developmental processes, including cell migration, differentiation, fertilization, and establishment of cellular polarity. Bridges of SUN and KASH proteins span the nuclear envelope and mediate many nuclear positioning events, but other pathways function independently through poorly characterized mechanisms. To identify and characterize novel mechanisms of nuclear migration, we conducted a nonbiased forward genetic screen for mutations that enhanced the nuclear migration defect of unc-84, which encodes a SUN protein. In Caenorhabditis elegans larvae, failure of hypodermal P-cell nuclear migration results in uncoordinated and egg-laying-defective animals. The process of P-cell nuclear migration in unc-84 null animals is temperature sensitive; at 25° migration fails in unc-84 mutants, but at 15° the migration occurs normally. We hypothesized that an additional pathway functions in parallel to the unc-84 pathway to move P-cell nuclei at 15°. In support of our hypothesis, forward genetic screens isolated eight emu (enhancer of the nuclear migration defect of unc-84) mutations that disrupt nuclear migration only in a null unc-84 background. The yc20 mutant was determined to carry a mutation in the toca-1 gene. TOCA-1 functions to move P-cell nuclei in a cell-autonomous manner. TOCA-1 is conserved in humans, where it functions to nucleate and organize actin during endocytosis. Therefore, we have uncovered a player in a previously unknown, likely actin-dependent, pathway that functions to move nuclei in parallel to SUN-KASH bridges. The other emu mutations potentially represent other components of this novel pathway.
Collapse
|
32
|
Tapley EC, Starr DA. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 2012; 25:57-62. [PMID: 23149102 DOI: 10.1016/j.ceb.2012.10.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The nuclear-cytoskeleton connection influences many aspects of cellular architecture, including nuclear positioning, the stiffness of the global cytoskeleton, and mechanotransduction. Central to all of these processes is the assembly and function of conserved SUN-KASH bridges, or LINC complexes, that span the nuclear envelope. Recent studies provide details of the higher order assembly and targeting of SUN proteins to the inner nuclear membrane. Structural studies characterize SUN-KASH interactions that form the central link of the nuclear-envelope bridge. KASH proteins at the outer nuclear membrane link the nuclear envelope to the cytoskeleton where forces are generated to move nuclei. Significantly, SUN proteins were recently shown to contribute to the progression of laminopathies.
Collapse
Affiliation(s)
- Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | | |
Collapse
|
33
|
Zuleger N, Kerr ARW, Schirmer EC. Many mechanisms, one entrance: membrane protein translocation into the nucleus. Cell Mol Life Sci 2012; 69:2205-16. [PMID: 22327555 PMCID: PMC11114554 DOI: 10.1007/s00018-012-0929-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/08/2012] [Accepted: 01/17/2012] [Indexed: 12/14/2022]
Abstract
The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Alastair R. W. Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Eric C. Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| |
Collapse
|
34
|
Synthesis, transport and incorporation into the nuclear envelope of A-type lamins and inner nuclear membrane proteins. Biochem Soc Trans 2012; 39:1758-63. [PMID: 22103521 DOI: 10.1042/bst20110653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian NE (nuclear envelope), which separates the nucleus from the cytoplasm, is a complex structure composed of nuclear pore complexes, the outer and inner nuclear membranes, the perinuclear space and the nuclear lamina (A- and B-type lamins). The NE is completely disassembled and reassembled at each cell division. In the present paper, we review recent advances in the understanding of the mechanisms implicated in the transport of inner nuclear membrane and nuclear lamina proteins from the endoplasmic reticulum to the nucleus in interphase cells and mitosis, with special attention to A-type lamins.
Collapse
|
35
|
Burns LT, Wente SR. Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol 2012; 24:341-9. [PMID: 22326668 DOI: 10.1016/j.ceb.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
The nuclear envelope (NE) in eukaryotic cells serves as the physical barrier between the nucleus and cytoplasm. Until recently, mechanisms for establishing the composition of the inner nuclear membrane (INM) remained uncharted. Current findings uncover multiple pathways for trafficking of integral and peripheral INM proteins. A major route for INM protein transport occurs through the nuclear pore complexes (NPCs) with additional requirements for nuclear localization sequences, transport receptors, and Ran-GTP. Studies also reveal a putative NPC-independent vesicular pathway for NE trafficking. INM perturbations lead to changes in nuclear physiology highlighting the potential human disease impacts of continued NE discoveries.
Collapse
Affiliation(s)
- Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | |
Collapse
|