1
|
László L, Kurilla A, Tilajka Á, Pancsa R, Takács T, Novák J, Buday L, Vas V. Unveiling epithelial plasticity regulation in lung cancer: Exploring the cross-talk among Tks4 scaffold protein partners. Mol Biol Cell 2024; 35:ar111. [PMID: 38985526 PMCID: PMC11321040 DOI: 10.1091/mbc.e24-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) represents a hallmark event in the evolution of lung cancer. This work aims to study a recently described EMT-regulating protein, Tks4, and to explore its potential as a prognostic biomarker in non-small cell lung cancer. In this study, we used CRISPR/Cas9 method to knockout (KO) Tks4 to study its functional roles in invadopodia formation, migration, and regulation of EMT marker expressions and we identified Tks4-interacting proteins. Tks4-KO A549 cells exhibited an EMT-like phenotype characterized by elongated morphology and increased expression of EMT markers. Furthermore, analyses of a large-scale lung cancer database and a patient-derived tissue array data revealed that the Tks4 mRNA level was decreased in more aggressive lung cancer stages. To understand the regulatory role of Tks4 in lung cancer, we performed a Tks4-interactome analysis via Tks4 immunoprecipitation-mass spectrometry on five different cell lines and identified CAPZA1 as a novel Tks4 partner protein. Thus, we propose that the absence of Tks4 leads to disruption of a connectome of multiple proteins and that the resulting undocking and likely mislocalization of signaling molecules impairs actin cytoskeleton rearrangement and activates EMT-like cell fate switches, both of which likely influence disease severity.
Collapse
Affiliation(s)
- Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anita Kurilla
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
3
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
5
|
Wang Y, Xiao F, Jin C, Wang W, Chen X, Liu Q, Ding K. The impact of structural modification of sulfated polysaccharides on bone morphogenic protein 2 and inhibition of endothelial cell angiogenesis. Carbohydr Res 2020; 496:108093. [PMID: 32738718 DOI: 10.1016/j.carres.2020.108093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Sulfated polysaccharides play important roles in angiogenesis. However, the impact of structural alteration of sulfated polysaccharide on the bioactivity is still vague. In this study, binding between different sulfated polysaccharides and bone morphogenic protein 2 (BMP2) was measured to understand the sense of this motif transformation. The results showed that binding between sulfated α-1,4-glucan and BMP2 was the most intensive. The branch of α-1,4-glucan was important for the binding. The affinity of sulfated polysaccharides to BMP2 increased as the molecular weight (MW) and degree of substitution (DS) increased. DS that exceeded 1.05 impaired binding and played more important role in polysaccharide BMP2 interaction than MW. The reservation of partial 6-OH would benefit its binding ability to BMP2. Further, we showed that sulfated polysaccharides with strong binding to BMP2 blocked phosphorylation of Smad 1/5/8 and expression of Id1 to a greater extent than those not strongly bind to BMP2. The binding strength of polysaccharides to BMP2 increased, so did the potency of the anti-angiogenesis effects.
Collapse
Affiliation(s)
- Ying Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Fei Xiao
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Wucheng Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Xia Chen
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Qin Liu
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Kriegler T, Lang S, Notari L, Hessa T. Prion Protein Translocation Mechanism Revealed by Pulling Force Studies. J Mol Biol 2020; 432:4447-4465. [PMID: 32502491 DOI: 10.1016/j.jmb.2020.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
The mammalian prion protein (PrP) engages with the ribosome-Sec61 translocation channel complex to generate different topological variants that are either physiological, or involved in neurodegenerative diseases. Here, we describe cotranslational folding and translocation mechanisms of PrP coupled to an Xbp1-based arrest peptide as folding sensor, to measure forces acting on PrP nascent chain. Our data reveal two main pulling events followed by a minor third one exerted on the nascent chains during their translocation. Using those force landscapes, we show that a specific sequence within an intrinsically disordered region, containing a polybasic and glycine-proline rich residues, modulates the second pulling event by interacting with TRAP complex. This work also delineates the sequence of events involved in generation of PrP toxic transmembrane topologies during its synthesis. Our results shed new insight into the folding of such a topological complex protein, where marginal pulling by the signal sequence, together with the flanking downstream sequence in the mature domain, primarily drives an overall inefficient translocation resulting in the nascent chain to adopt alternative topologies.
Collapse
Affiliation(s)
- Theresa Kriegler
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Luigi Notari
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit, CMM, L8:02, Karolinska Institutet, Sweden
| | - Tara Hessa
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Mohammadi B, Linsenmeier L, Shafiq M, Puig B, Galliciotti G, Giudici C, Willem M, Eden T, Koch-Nolte F, Lin YH, Tatzelt J, Glatzel M, Altmeppen HC. Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Mol Neurobiol 2020; 57:2812-2829. [PMID: 32367491 PMCID: PMC7253391 DOI: 10.1007/s12035-020-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aβ) in Alzheimer’s disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aβ toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent “anti-prion” agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Camilla Giudici
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yu-Hsuan Lin
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
8
|
Lee S, Shin Y, Kim K, Song Y, Kim Y, Kang SW. Protein Translocation Acquires Substrate Selectivity Through ER Stress-Induced Reassembly of Translocon Auxiliary Components. Cells 2020; 9:cells9020518. [PMID: 32102453 PMCID: PMC7072789 DOI: 10.3390/cells9020518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Protein import across the endoplasmic reticulum membrane is physiologically regulated in a substrate-selective manner to ensure the protection of stressed ER from the overload of misfolded proteins. However, it is poorly understood how different types of substrates are accurately distinguished and disqualified during translocational regulation. In this study, we found poorly assembled translocon-associated protein (TRAP) complexes in stressed ER. Immunoaffinity purification identified calnexin in the TRAP complex in which poor assembly inhibited membrane insertion of the prion protein (PrP) in a transmembrane sequence-selective manner, through translocational regulation. This reaction was induced selectively by redox perturbation, rather than calcium depletion, in the ER. The liberation of ERp57 from calnexin appeared to be the reason for the redox sensitivity. Stress-independent disruption of the TRAP complex prevented a pathogenic transmembrane form of PrP (ctmPrP) from accumulating in the ER. This study uncovered a previously unappreciated role for calnexin in assisting the redox-sensitive function of the TRAP complex and provided insights into the ER stress-induced reassembly of translocon auxiliary components as a key mechanism by which protein translocation acquires substrate selectivity.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Yejin Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-2205
| |
Collapse
|
9
|
Shi J, Hu X, Guo Y, Wang L, Ji J, Li J, Zhang ZR. A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation. J Biol Chem 2019; 294:20084-20096. [PMID: 31748412 DOI: 10.1074/jbc.ra119.010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-associated degradation (ERAD) pathway mediates the endoplasmic reticulum-to-cytosol retrotranslocation of defective proteins through protein complexes called retrotranslocons. Defective proteins usually have complex conformations and topologies, and it is unclear how ERAD can thread these conformationally diverse protein substrates through the retrotranslocons. Here, we investigated the substrate conformation flexibility necessary for transport via retrotranslocons on the ERAD-L, ERAD-M, and HIV-encoded protein Vpu-hijacked ERAD branches. To this end, we appended various ERAD substrates with specific domains whose conformations were tunable in flexibility or tightness by binding to appropriate ligands. With this technique, we could define the capacity of specific retrotranslocons in disentangling very tight, less tight but well-folded, and unstructured conformations. The Hrd1 complex, the retrotranslocon on the ERAD-L branch, permitted the passage of substrates with a proteinase K-resistant tight conformation, whereas the E3 ligase gp78-mediated ERAD-M allowed passage only of nearly completely disordered but not well-folded substrates and thus may have the least unfoldase activity. Vpu-mediated ERAD, containing a potential retrotranslocon, could unfold well-folded substrates for successful retrotranslocation. However, substrate retrotranslocation in Vpu-mediated ERAD was blocked by enhanced conformational tightness of the substrate. On the basis of these findings, we propose a mechanism underlying polypeptide movement through the endoplasmic reticulum membrane. We anticipate that our biochemical system paves the way for identifying the factors necessary for the retrotranslocation of membrane proteins.
Collapse
Affiliation(s)
- Junfen Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xianyan Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yuan Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China .,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
10
|
Hegde RS, Zavodszky E. Recognition and Degradation of Mislocalized Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033902. [PMID: 30833453 DOI: 10.1101/cshperspect.a033902] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A defining feature of eukaryotic cells is the segregation of complex biochemical processes among different intracellular compartments. The protein targeting, translocation, and trafficking pathways that sustain compartmentalization must recognize a diverse range of clients via degenerate signals. This recognition is imperfect, resulting in polypeptides at incorrect cellular locations. Cells have evolved mechanisms to selectively recognize mislocalized proteins and triage them for degradation or rescue. These spatial quality control pathways maintain cellular protein homeostasis, become especially important during organelle stress, and might contribute to disease when they are impaired or overwhelmed.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Eszter Zavodszky
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
11
|
Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity. Nat Commun 2019; 10:3362. [PMID: 31358743 PMCID: PMC6662827 DOI: 10.1038/s41467-019-11325-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Epithelial homeostasis requires balanced progenitor cell proliferation and differentiation, whereas disrupting this equilibrium fosters degeneration or cancer. Here we studied how cell polarity signaling orchestrates epidermal self-renewal and differentiation. Using genetic ablation, quantitative imaging, mechanochemical reconstitution and atomic force microscopy, we find that mammalian Par3 couples genome integrity and epidermal fate through shaping keratinocyte mechanics, rather than mitotic spindle orientation. Par3 inactivation impairs RhoA activity, actomyosin contractility and viscoelasticity, eliciting mitotic failures that trigger aneuploidy, mitosis-dependent DNA damage responses, p53 stabilization and premature differentiation. Importantly, reconstituting myosin activity is sufficient to restore mitotic fidelity, genome integrity, and balanced differentiation and stratification. Collectively, this study deciphers a mechanical signaling network in which Par3 acts upstream of Rho/actomyosin contractility to promote intrinsic force generation, thereby maintaining mitotic accuracy and cellular fitness at the genomic level. Disturbing this network may compromise not only epidermal homeostasis but potentially also that of other self-renewing epithelia. Many developing tissues require Par-driven polarization, but its role in mammalian tissue maintenance is unclear. Here, the authors show that in mouse epidermis, Par3 governs tissue homeostasis not via orientation of cell division but by coupling cell mechanics with mitotic accuracy and genome integrity.
Collapse
|
12
|
Lee Y, Eum H, Lee D, Lee S, Song Y, Kang SW. Mutant-selective topologic conversion facilitates selective degradation of a pathogenic prion isoform. Cell Death Differ 2019; 27:284-296. [PMID: 31127199 PMCID: PMC7205900 DOI: 10.1038/s41418-019-0354-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
Regulating protein import across the endoplasmic reticulum (ER) membrane occasionally results in the synthesis of topologically unnatural variants, and their accumulation often leads to proteotoxicity. However, since this is a regulated process, it is questionable whether the topological rearrangement really has adverse consequences. In the present study, we provide an insight into the functional benefit of translocational regulation by illustrating mutant-selective topologic conversion (MSTC) and demonstrate that MSTC contributes to selective degradation of a membrane-anchored prion protein isoform (ctmPrP). We find that ctmPrP is inherently short-lived and topologically competent for degradation rather than accumulation. MSTC achieves, cotranslationally, the unique topology of ctmPrP during translocation, facilitating selective ctmPrP degradation from the ER via the proteasome-dependent pathway before entering the secretory pathway. At this time, the N-terminal polycationic cluster is essential for MSTC, and its cytosolic exposure acquires “ERAD-degron”-like activity for ctmPrP. Bypassing MSTC delays ctmPrP degradation, thus increasing prion proteotoxicity. Thus, topological rearrangement is used for the MSTC as a part of the protein quality control pathway to ensure the safety of the secretory pathway from misfolded PrP.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hongsik Eum
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2019; 116:8493-8498. [PMID: 30971494 DOI: 10.1073/pnas.1818522116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial pneumonia remains a leading cause of morbidity and mortality worldwide. A defining feature of pneumonia is lung injury, leading to protracted suffering and vulnerability long after bacterial clearance. Little is known about which cells are damaged during bacterial pneumonia and if the regenerative process can be harnessed to promote tissue repair and host recovery. Here, we show that infection of mice with Streptococcus pneumoniae (Sp) caused substantial damage to alveolar epithelial cells (AEC), followed by a slow process of regeneration. Concurrent with AEC regeneration, the expression of miRNA-302 is elevated in AEC. Treatment of Sp-infected mice with miRNA-302 mimics improved lung functions, host recovery, and survival. miRNA-302 mediated its therapeutic effects, not by inhibiting apoptosis and preventing damage, but by promoting proliferation of local epithelial progenitor cells to regenerate AEC. These results demonstrate the ability of microRNA-based therapy to promote AEC regeneration and enhance host recovery from bacterial pneumonia.
Collapse
|
14
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Laing L, Viana J, Dempster E, Uren Webster T, van Aerle R, Mill J, Santos E. Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:16-25. [DOI: 10.1016/j.cbpa.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|
17
|
Wang S, Idrissi FZ, Hermansson M, Grippa A, Ejsing CS, Carvalho P. Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nat Commun 2018; 9:2939. [PMID: 30054465 PMCID: PMC6063905 DOI: 10.1038/s41467-018-05278-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
Lipid droplets (LDs) and peroxisomes are ubiquitous organelles with central roles in eukaryotic cells. Although the mechanisms involved in biogenesis of these organelles remain elusive, both seem to require the endoplasmic reticulum (ER). Here we show that in yeast the ER budding of these structurally unrelated organelles has remarkably similar requirements and involves cooperation between Pex30 and the seipin complex. In the absence of these components, budding of both LDs and peroxisomes is inhibited, leading to the ER accumulation of their respective constituent molecules, such as triacylglycerols and peroxisomal membrane proteins, whereas COPII vesicle formation remains unaffected. This phenotype can be reversed by remodeling ER phospholipid composition highlighting a key function of these lipids in organelle biogenesis. We propose that seipin and Pex30 act in concert to organize membrane domains permissive for organelle budding, and that may have a lipid composition distinct from the bulk ER.
Collapse
Affiliation(s)
- Sihui Wang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Fatima-Zahra Idrissi
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Alexandra Grippa
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Zhang W, Neuner A, Rüthnick D, Sachsenheimer T, Lüchtenborg C, Brügger B, Schiebel E. Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. J Cell Biol 2018; 217:877-894. [PMID: 29439116 PMCID: PMC5839787 DOI: 10.1083/jcb.201706024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved paralogous Brr6 and Brl1 promote NPC biogenesis in an unclear manner. Here, Zhang et al. show that both transmembrane proteins transiently associate with NPC assembly intermediates and directly promote NPC biogenesis. The paralogous Brr6 and Brl1 are conserved integral membrane proteins of the nuclear envelope (NE) with an unclear role in nuclear pore complex (NPC) biogenesis. Here, we analyzed double-degron mutants of Brr6/Brl1 to understand this function. Depletion of Brr6 and Brl1 caused defects in NPC biogenesis, whereas the already assembled NPCs remained unaffected. This NPC biogenesis defect was not accompanied by a change in lipid composition. However, Brl1 interacted with Ndc1 and Nup188 by immunoprecipitation, and with transmembrane and outer and inner ring NPC components by split yellow fluorescent protein analysis, indicating a direct role in NPC biogenesis. Consistently, we found that Brr6 and Brl1 associated with a subpopulation of NPCs and emerging NPC assembly sites. Moreover, BRL1 overexpression affected NE morphology without a change in lipid composition and completely suppressed the nuclear pore biogenesis defect of nup116Δ and gle2Δ cells. We propose that Brr6 and Brl1 transiently associate with NPC assembly sites where they promote NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
19
|
The signalling mechanisms of a novel mitochondrial complex I inhibitor prevent lipid accumulation and attenuate TNF-α-induced insulin resistance in vitro. Eur J Pharmacol 2017; 800:1-8. [DOI: 10.1016/j.ejphar.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023]
|
20
|
Ho PW, Swinnen S, Duitama J, Nevoigt E. The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:10. [PMID: 28053667 PMCID: PMC5209837 DOI: 10.1186/s13068-016-0696-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Glycerol is an abundant by-product of biodiesel production and has several advantages as a substrate in biotechnological applications. Unfortunately, the popular production host Saccharomyces cerevisiae can barely metabolize glycerol by nature. RESULTS In this study, two evolved derivatives of the strain CEN.PK113-1A were created that were able to grow in synthetic glycerol medium (strains PW-1 and PW-2). Their growth performances on glycerol were compared with that of the previously published evolved CEN.PK113-7D derivative JL1. As JL1 showed a higher maximum specific growth rate on glycerol (0.164 h-1 compared to 0.119 h-1 for PW-1 and 0.127 h-1 for PW-2), its genomic DNA was subjected to whole-genome resequencing. Two point mutations in the coding sequences of the genes UBR2 and GUT1 were identified to be crucial for growth in synthetic glycerol medium and subsequently verified by reverse engineering of the wild-type strain CEN.PK113-7D. The growth rate of the resulting reverse-engineered strain was 0.130 h-1. Sanger sequencing of the GUT1 and UBR2 alleles of the above-mentioned evolved strains PW-1 and PW-2 also revealed one single-point mutation in these two genes, and both mutations were demonstrated to be also crucial and sufficient for obtaining a maximum specific growth rate on glycerol of ~0.120 h-1. CONCLUSIONS The current work confirmed the importance of UBR2 and GUT1 as targets for establishing glycerol utilization in strains of the CEN.PK family. In addition, it shows that a growth rate on glycerol of 0.130 h-1 can be established in reverse-engineered CEN.PK strains by solely replacing a single amino acid in the coding sequences of both Ubr2 and Gut1.
Collapse
Affiliation(s)
- Ping-Wei Ho
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Cra 1 Este No 19A-40, Bogotá, Colombia
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
21
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
22
|
Davis EM, Kim J, Menasche BL, Sheppard J, Liu X, Tan AC, Shen J. Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Rep 2015; 11:1727-36. [PMID: 26074080 DOI: 10.1016/j.celrep.2015.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Glycophosphatidylinositol-anchored proteins (GPI-APs) play essential roles in physiology, but their biogenesis and trafficking have not been systematically characterized. Here, we took advantage of the recently available haploid genetics approach to dissect GPI-AP pathways in human cells using prion protein (PrP) and CD59 as model molecules. Our screens recovered a large number of common and unexpectedly specialized factors in the GPI-AP pathways. PIGN, PGAP2, and PIGF, which encode GPI anchor-modifying enzymes, were selectively isolated in the CD59 screen, suggesting that GPI anchor composition significantly influences the biogenesis of GPI-APs in a substrate-dependent manner. SEC62 and SEC63, which encode components of the ER-targeting machinery, were selectively recovered in the PrP screen, indicating that they do not constitute a universal route for the biogenesis of mammalian GPI-APs. Together, these comparative haploid genetic screens demonstrate that, despite their similarity in overall architecture and subcellular localization, GPI-APs follow markedly distinct biosynthetic and trafficking pathways.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bridget L Menasche
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jacob Sheppard
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
24
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Song Z, Zhao D, Yang L. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein. Neural Regen Res 2014; 8:2868-78. [PMID: 25206608 PMCID: PMC4146015 DOI: 10.3969/j.issn.1673-5374.2013.30.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic reticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Dezfouli M, Vickovic S, Iglesias MJ, Nilsson P, Schwenk JM, Ahmadian A. Magnetic bead assisted labeling of antibodies at nanogram scale. Proteomics 2013; 14:14-8. [PMID: 24307663 DOI: 10.1002/pmic.201300283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/01/2013] [Accepted: 10/16/2013] [Indexed: 12/19/2022]
Abstract
There are currently several initiatives that aim to produce binding reagents for proteome-wide analysis. To enable protein detection, visualization, and target quantification, covalent coupling of reporter molecules to antibodies is essential. However, current labeling protocols recommend considerable amount of antibodies, require antibody purity and are not designed for automation. Given that small amounts of antibodies are often sufficient for downstream analysis, we developed a labeling protocol that combines purification and modification of antibodies at submicrogram quantities. With the support of magnetic microspheres, automated labeling of antibodies in parallel using biotin or fluorescent dyes was achieved.
Collapse
Affiliation(s)
- Mahya Dezfouli
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Petris G, Casini A, Sasset L, Cesaratto F, Bestagno M, Cereseto A, Burrone OR. CD4 and BST-2/tetherin proteins retro-translocate from endoplasmic reticulum to cytosol as partially folded and multimeric molecules. J Biol Chem 2013; 289:1-12. [PMID: 24257748 DOI: 10.1074/jbc.m113.512368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD4 and BST-2/Tetherin are cellular membrane proteins targeted to degradation by the HIV-1 protein Vpu. In both cases proteasomal degradation following recruitment into the ERAD pathway has been described. CD4 is a type I transmembrane glycoprotein, with four extracellular immunoglobulin-like domains containing three intrachain disulfide bridges. BST-2/Tetherin is an atypical type II transmembrane glycoprotein with an N-terminal transmembrane domain and a C-terminal glycophosphatidylinositol anchor, which dimerizes through three interchain bridges. We investigated spontaneous and Vpu-induced retro-translocation of CD4 and BST-2/Tetherin using our novel biotinylation technique in living cells to determine ER-to-cytosol retro-translocation of proteins. We found that CD4 retro-translocates with oxidized intrachain disulfide bridges, and only upon proteasomal inhibition does it accumulate in the cytosol as already reduced and deglycosylated molecules. Similarly, BST-2/Tetherin is first exposed to the cytosol as a dimeric oxidized complex and then becomes deglycosylated and reduced to monomers. These results raise questions on the required features of the putative retro-translocon, suggesting alternative retro-translocation mechanisms for membrane proteins in which complete cysteine reduction and unfolding are not always strictly required before ER to cytosol dislocation.
Collapse
Affiliation(s)
- Gianluca Petris
- From the International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy and
| | | | | | | | | | | | | |
Collapse
|
28
|
Tipper D, Martinez-Vilchez I, Markgren L, Kagalwala DZ. Mammalian Prion protein expression in yeast; a model for transmembrane insertion. Prion 2013; 7:477-87. [PMID: 24141197 DOI: 10.4161/pri.26850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prion protein (PrP), a GPI-anchored glycoprotein, is inefficiently secreted by mammalian microsomes, 50% being found as transmembrane (TM) proteins with the central TM1 segment spanning the membrane. TM1 hydrophobicity is marginal for lateral membrane insertion, which is primarily driven by hydrophobic interaction between the ER translocon and substrates in transit. Most inserted TM1 has its N-terminus in the ER lumen (Ntm orientation), as expected for arrest of normal secretion. However, 20% is found in inverted Ctm orientation. These are minor species in vivo, presumably a consequence of efficient quality control. PrP mutations that increase TM1 hydrophobicity result in increased Ctm insertion, both in vitro and in mouse brain, and a strong correlation is found between CtmPrP insertion and neuropathology in transgenic mice; a copper-dependent pathogenicity mechanism is suggested. PrP fusions with a C-terminal epitope tag, when expressed in yeast cells at moderate levels, appear to interact efficiently with the translocon, providing a useful model for testing the effects of PrP mutations on TM insertion and orientation. However, secretion of PrP by the mammalian translocon requires the TRAP complex, absent in yeast, where essentially all PrP ends up as TM species, 85-90% Ntm and 10-15% Ctm. Although yeast is, therefore, an incomplete mimic of mammalian PrP trafficking, effects on Ctm insertion of mutations increasing TM1 hydrophobicity closely reflect those seen in vitro. Electrostatic substrate-translocon interactions are a major determinant of TM protein insertion orientation and the yeast model was used to investigate the role of the large negative charge difference across TM1, a likely cause of translocation delay that would favor TM insertion and Ctm orientation. An increase in ΔCh from -5 to -7 caused a marked increase in Ctm insertion, while a decrease to -3 or -1 allowed 35 and about 65% secretion, respectively. Utility of the yeast model and the role of this charge difference in driving PrP membrane insertion are confirmed.
Collapse
Affiliation(s)
- Donald Tipper
- Microbiology and Physiological Systems Department; University of Massachusetts Medical School; Worcester MA USA
| | | | - Lucas Markgren
- Mathematics Department; Doherty Memorial High School; Worcester MA USA
| | - Din Z Kagalwala
- Department of Anesthesiology; Hackensack University Medical Center; Hackensack, NJ USA
| |
Collapse
|
29
|
Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97:9343-53. [DOI: 10.1007/s00253-013-5232-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
|
30
|
Abstract
Transmissible encephalopathies (TSEs) are believed by many to arise by spontaneous conversion of host prion protein (PrP) into an infectious amyloid (PrP-res, PrP (Sc) ) without nucleic acid. Many TSE agents reside in the environment, with infection controlled by public health measures. These include the disappearance of kuru with the cessation of ritual cannibalism, the dramatic reduction of epidemic bovine encephalopathy (BSE) by removal of contaminated feed, and the lack of endemic scrapie in geographically isolated Australian sheep with susceptible PrP genotypes. While prion protein modeling has engendered an intense focus on common types of protein misfolding and amyloid formation in diverse organisms and diseases, the biological characteristics of infectious TSE agents, and their recognition by the host as foreign entities, raises several fundamental new directions for fruitful investigation such as: (1) unrecognized microbial agents in the environmental metagenome that may cause latent neurodegenerative disease, (2) the evolutionary social and protective functions of different amyloid proteins in diverse organisms from bacteria to mammals, and (3) amyloid formation as a beneficial innate immune response to stress (infectious and non-infectious). This innate process however, once initiated, can become unstoppable in accelerated neuronal aging.
Collapse
|
31
|
Choi I, Kim J, Park JY, Kang SW. Cotransin induces accumulation of a cytotoxic clusterin variant that cotranslationally rerouted to the cytosol. Exp Cell Res 2013; 319:1073-82. [PMID: 23416242 DOI: 10.1016/j.yexcr.2013.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/27/2012] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation. These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Ilho Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Tóth E, Kulcsár PI, Fodor E, Ayaydin F, Kalmár L, Borsy AÉ, László L, Welker E. The highly conserved, N-terminal (RXXX)8 motif of mouse Shadoo mediates nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1199-211. [PMID: 23360978 DOI: 10.1016/j.bbamcr.2013.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
The prion protein (PrP)-known for its central role in transmissible spongiform encephalopathies-has been reported to possess two nuclear localization signals and localize in the nuclei of certain cells in various forms. Although these data are superficially contradictory, it is apparent that nuclear forms of the prion protein can be found in cells in either the healthy or the diseased state. Here we report that Shadoo (Sho)-a member of the prion protein superfamily-is also found in the nucleus of several neural and non-neural cell lines as visualized by using an YFP-Sho construct. This nuclear localization is mediated by the (25-61) fragment of mouse Sho encompassing an (RXXX)8 motif. Bioinformatic analysis shows that the (RXXX)n motif (n=7-8) is a highly conserved and characteristic part of mammalian Shadoo proteins. Experiments to assess if Sho enters the nucleus by facilitated transport gave no decisive results: the inhibition of active processes that require energy in the cell, abolishes nuclear but not nucleolar accumulation. However, the (RXXX)8 motif is not able to mediate the nuclear transport of large fusion constructs exceeding the size limit of the nuclear pore for passive entry. Tracing the journey of various forms of Sho from translation to the nucleus and discerning the potential nuclear function of PrP and Sho requires further studies.
Collapse
Affiliation(s)
- E Tóth
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lisa S, Domingo B, Martínez J, Gilch S, Llopis JF, Schätzl HM, Gasset M. Failure of prion protein oxidative folding guides the formation of toxic transmembrane forms. J Biol Chem 2012; 287:36693-701. [PMID: 22955286 DOI: 10.1074/jbc.m112.398776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrP(C)) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.
Collapse
Affiliation(s)
- Silvia Lisa
- Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Gilmore R, Mandon EC. Understanding integration of α-helical membrane proteins: the next steps. Trends Biochem Sci 2012; 37:303-8. [PMID: 22748693 DOI: 10.1016/j.tibs.2012.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.
Collapse
Affiliation(s)
- Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | |
Collapse
|
35
|
Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 2012; 19:517-24, S1. [PMID: 22484317 DOI: 10.1038/nsmb.2273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Despite intense research in the context of neurodegenerative diseases associated with its misfolding, the endogenous human prion protein PrP(C) (or PRNP) has poorly understood physiological functions. Whereas most PrP(C) is exposed to the extracellular environment, conserved domains result in transmembrane forms of PrP(C) that traffic in the endolysosomal system and are linked to inherited and infectious neuropathologies. One transmembrane PrP(C) variant orients the N-terminal 'octarepeat' domain into the cytoplasm. Here we demonstrate that the octarepeat domain of human PrP(C) contains GW/WG motifs that bind Argonaute (AGO) proteins, the essential components of microRNA (miRNA)-induced silencing complexes (miRISCs). Transmembrane PrP(C) preferentially binds AGO, and PrP(C) promotes formation or stability of miRISC effector complexes containing the trinucleotide repeat-containing gene 6 proteins (TNRC6) and miRNA-repressed mRNA. Accordingly, effective repression of several miRNA targets requires PrP(C). We propose that dynamic interactions between PrP(C)-enriched endosomes and subcellular foci of AGO underpin these effects.
Collapse
|
36
|
A calmodulin-dependent translocation pathway for small secretory proteins. Cell 2012; 147:1576-88. [PMID: 22196732 DOI: 10.1016/j.cell.2011.11.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/15/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022]
Abstract
Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.
Collapse
|
37
|
Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011; 475:394-7. [PMID: 21743475 PMCID: PMC3150218 DOI: 10.1038/nature10181] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways1. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis2,3. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here, we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone4. Bag6 complex capture depends on unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 clients is transferred to TRC40 for membrane insertion, while the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex impairs efficient ubiquitination selectively of MLPs. Thus, by its presence on ribosomes synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling permits fast-tracking of MLPs for degradation without futile engagement of cytosolic folding machinery.
Collapse
|