1
|
Thorn HI, Guruceaga X, Martin-Vicente A, Nywening AV, Xie J, Ge W, Fortwendel JR. MOB-mediated regulation of septation initiation network (SIN) signaling is required for echinocandin-induced hyperseptation in Aspergillus fumigatus. mSphere 2024; 9:e0069523. [PMID: 38349166 DOI: 10.1128/msphere.00695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
Aspergillus fumigatus is a major invasive mold pathogen and the most frequent etiologic agent of invasive aspergillosis. The currently available treatments for invasive aspergillosis are limited in both number and efficacy. Our recent work has uncovered that the β-glucan synthase inhibitors, the echinocandins, are fungicidal against strains of A. fumigatus with defects in septation initiation network (SIN) kinase activity. These drugs are known to be fungistatic against strains with normal septation. Surprisingly, SIN kinase mutant strains also failed to invade lung tissue and were significantly less virulent in immunosuppressed mouse models. Inhibiting septation in filamentous fungi is therefore an exciting therapeutic prospect to both reduce virulence and improve current antifungal therapy. However, the SIN remains understudied in pathogenic fungi. To address this knowledge gap, we characterized the putative regulatory components of the A. fumigatus SIN. These included the GTPase, SpgA, it's two-component GTPase-activating protein, ByrA/BubA, and the kinase activators, SepM and MobA. Deletion of spgA, byrA, or bubA resulted in no overt septation or echinocandin susceptibility phenotypes. In contrast, our data show that deletion of sepM or mobA largely phenocopies disruption of their SIN kinase binding partners, sepL and sidB, respectively. Reduced septum formation, echinocandin hypersusceptibility, and reduced virulence were generated by loss of either gene. These findings provide strong supporting evidence that septa are essential not only for withstanding the cell wall disrupting effects of echinocandins but are also critical for the establishment of invasive disease. Therefore, pharmacological SIN inhibition may be an exciting strategy for future antifungal drug development.IMPORTANCESepta are important structural determinants of echinocandin susceptibility and tissue invasive growth for the ubiquitous fungal pathogen Aspergillus fumigatus. Components of the septation machinery therefore represent promising novel antifungal targets to improve echinocandin activity and reduce virulence. However, little is known about septation regulation in A. fumigatus. Here, we characterize the predicted regulatory components of the A. fumigatus septation initiation network. We show that the kinase activators SepM and MobA are vital for proper septation and echinocandin resistance, with MobA playing an essential role. Null mutants of mobA displayed significantly reduced virulence in a mouse model, underscoring the importance of this pathway for A. fumigatus pathogenesis.
Collapse
Affiliation(s)
- Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wenbo Ge
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Boolean Models of Biological Processes Explain Cascade-Like Behavior. Sci Rep 2016; 7:20067. [PMID: 26821940 PMCID: PMC4731822 DOI: 10.1038/srep20067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/08/2015] [Indexed: 11/09/2022] Open
Abstract
Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either “on” or “off” and along with the molecules interact with each other, their individual status changes from “on” to “off” or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.
Collapse
|
3
|
Perez-Nadales E, Nogueira MFA, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014; 70:42-67. [PMID: 25011008 PMCID: PMC4161391 DOI: 10.1016/j.fgb.2014.06.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/05/2022]
Abstract
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain.
| | | | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sónia Castanheira
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mennat El Ghalid
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Elisabeth Grund
- Functional Genomics of Plant Pathogenic Fungi, UMR 5240 CNRS-UCB-INSA-Bayer SAS, Bayer CropScience, 69263 Lyon, France
| | - Klaus Lengeler
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Elisabetta Marchegiani
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Pankaj Vinod Mehrotra
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Marino Moretti
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Vikram Naik
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Miriam Oses-Ruiz
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Therese Oskarsson
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Katja Schäfer
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Lisa Wasserstrom
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Regine Kahmann
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Marc-Henri Lebrun
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - José Perez-Martin
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Di Pietro
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Nicholas J Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Valerie Toquin
- Biochemistry Department, Bayer SAS, Bayer CropScience, CRLD, 69263 Lyon, France
| | - Andrea Walther
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| |
Collapse
|
4
|
Ledesma-Amaro R, Kerkhoven EJ, Revuelta JL, Nielsen J. Genome scale metabolic modeling of the riboflavin overproducerAshbya gossypii. Biotechnol Bioeng 2013; 111:1191-9. [DOI: 10.1002/bit.25167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Departamento de Microbiología y Genética; Metabolic Engineering Group; Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca Spain
| | - Eduard J. Kerkhoven
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - José Luis Revuelta
- Departamento de Microbiología y Genética; Metabolic Engineering Group; Universidad de Salamanca; Campus Miguel de Unamuno; Salamanca Spain
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
| |
Collapse
|
5
|
The Mitotic Exit Network: new turns on old pathways. Trends Cell Biol 2013; 24:145-52. [PMID: 24594661 DOI: 10.1016/j.tcb.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/04/2023]
Abstract
In budding yeast, the Mitotic Exit Network (MEN) is a signaling pathway known to drive cells out of mitosis and promote the faithful division of cells. The MEN triggers inactivation of cyclin-dependent kinase (Cdk1), the master regulator of mitosis, and the onset of cytokinesis after segregation of the daughter nuclei. The current model of the MEN suggests that MEN activity is restricted to late anaphase and coordinated with proper alignment of the spindle pole bodies (SPBs) with the division axis. However, recent evidence suggests that MEN activity may function earlier in mitosis, prompting re-evaluation of the current model. Here we attempt to integrate this recent progress into the current view of mitotic exit.
Collapse
|
6
|
Genomes of Ashbya fungi isolated from insects reveal four mating-type loci, numerous translocations, lack of transposons, and distinct gene duplications. G3-GENES GENOMES GENETICS 2013; 3:1225-39. [PMID: 23749448 PMCID: PMC3737163 DOI: 10.1534/g3.112.002881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The filamentous fungus Ashbya gossypii is a cotton pathogen transmitted by insects. It is readily grown and manipulated in the laboratory and is commercially exploited as a natural overproducer of vitamin B2. Our previous genome analysis of A. gossypii isolate ATCC10895, collected in Trinidad nearly 100 years ago, revealed extensive synteny with the Saccharomyces cerevisiae genome, leading us to use it as a model organism to understand the evolution of filamentous growth. To further develop Ashbya as a model system, we have investigated the ecological niche of A. gossypii and isolated additional strains and a sibling species, both useful in comparative analysis. We isolated fungi morphologically similar to A. gossypii from different plant-feeding insects of the suborder Heteroptera, generated a phylogenetic tree based on rDNA-ITS sequences, and performed high coverage short read sequencing with one A. gossypii isolate from Florida, a new species, Ashbya aceri, isolated in North Carolina, and a genetically marked derivative of ATCC10895 intensively used for functional studies. In contrast to S. cerevisiae, all strains carry four not three mating type loci, adding a new puzzle in the evolution of Ashbya species. Another surprise was the genome identity of 99.9% between the Florida strain and ATCC10895, isolated in Trinidad. The A. aceri and A. gossypii genomes show conserved gene orders rearranged by eight translocations, 90% overall sequence identity, and fewer tandem duplications in the A. aceri genome. Both species lack transposable elements. Finally, our work identifies plant-feeding insects of the suborder Heteroptera as the most likely natural reservoir of Ashbya, and that infection of cotton and other plants may be incidental to the growth of the fungus in its insect host.
Collapse
|
7
|
Wang G, Rong Y, Chen H, Pearson C, Du C, Simha R, Zeng C. Process-driven inference of biological network structure: feasibility, minimality, and multiplicity. PLoS One 2012; 7:e40330. [PMID: 22815739 PMCID: PMC3399897 DOI: 10.1371/journal.pone.0040330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/07/2012] [Indexed: 12/30/2022] Open
Abstract
A common problem in molecular biology is to use experimental data, such as microarray data, to infer knowledge about the structure of interactions between important molecules in subsystems of the cell. By approximating the state of each molecule as “on” or “off”, it becomes possible to simplify the problem, and exploit the tools of Boolean analysis for such inference. Amongst Boolean techniques, the process-driven approach has shown promise in being able to identify putative network structures, as well as stability and modularity properties. This paper examines the process-driven approach more formally, and makes four contributions about the computational complexity of the inference problem, under the “dominant inhibition” assumption of molecular interactions. The first is a proof that the feasibility problem (does there exist a network that explains the data?) can be solved in polynomial-time. Second, the minimality problem (what is the smallest network that explains the data?) is shown to be NP-hard, and therefore unlikely to result in a polynomial-time algorithm. Third, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Fourth, the theoretical framework explains how multiplicity (the number of network solutions to realize a given biological process), which can take exponential-time to compute, can instead be accurately estimated by a fast, polynomial-time heuristic.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Physics, George Washington University, Washington, D.C., United States of America
| | - Yongwu Rong
- Department of Mathematics, George Washington University, Washington, D.C., United States of America
| | - Hao Chen
- Department of Physics, George Washington University, Washington, D.C., United States of America
| | - Carl Pearson
- Department of Physics, George Washington University, Washington, D.C., United States of America
| | - Chenghang Du
- Department of Physics, George Washington University, Washington, D.C., United States of America
| | - Rahul Simha
- Department of Computer Science, George Washington University, Washington, D.C., United States of America
| | - Chen Zeng
- Department of Physics, George Washington University, Washington, D.C., United States of America
- Department of Physics, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
8
|
Gibeaux R, Lang C, Politi AZ, Jaspersen SL, Philippsen P, Antony C. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii. J Cell Sci 2012; 125:5830-9. [DOI: 10.1242/jcs.111005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report about the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length are growing according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally, do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that in A. gossypii two nMTs attach to each kinetochore and not only one like in S. cerevisiae.
Collapse
|