1
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Bhargava P. Regulatory networking of the three RNA polymerases helps the eukaryotic cells cope with environmental stress. Curr Genet 2021; 67:595-603. [PMID: 33778898 DOI: 10.1007/s00294-021-01179-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Environmental stress influences the cellular physiology in multiple ways. Transcription by all the three RNA polymerases (Pols I, II, or III) in eukaryotes is a highly regulated process. With latest advances in technology, which have made many extensive genome-wide studies possible, it is increasingly recognized that all the cellular processes may be interconnected. A comprehensive view of the current research observations brings forward an interesting possibility that Pol II-associated factors may be directly involved in the regulation of expression from the Pol III-transcribed genes and vice versa, thus enabling a cross-talk between the two polymerases. An equally important cross-talk between the Pol I and Pol II/III has also been documented. Collectively, these observations lead to a change in the current perception that looks at the transcription of a set of genes transcribed by the three Pols in isolation. Emergence of an inclusive perspective underscores that all stress signals may converge on common mechanisms of transcription regulation, requiring an extensive cross-talk between the regulatory partners. Of the three RNA polymerases, Pol III turns out as the hub of these cross-talks, an essential component of the cellular stress-response under which the majority of the cellular transcriptional activity is shut down or re-aligned.
Collapse
Affiliation(s)
- Purnima Bhargava
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
3
|
Trotta E. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast. J Biol Chem 2019; 294:12349-12358. [PMID: 31235518 PMCID: PMC6699833 DOI: 10.1074/jbc.ra119.008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Indexed: 07/24/2023] Open
Abstract
In yeast (Saccharomyces cerevisiae), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.
| |
Collapse
|
4
|
Abstract
In eukaryotes, the separation of translation from transcription by the nuclear envelope enables mRNA modifications such as capping, splicing, and polyadenylation. These modifications are mediated by a spectrum of ribonuclear proteins that associate with preRNA transcripts, coordinating the different steps and coupling them to nuclear export, ensuring that only mature transcripts reach the cytoplasmic translation machinery. Although the components of this machinery have been identified and considerable functional insight has been achieved, a number of questions remain outstanding about mRNA nuclear export and how it is integrated into the nuclear phase of the gene expression pathway. Nuclear export factors mediate mRNA transit through nuclear pores to the cytoplasm, after which these factors are removed from the mRNA, preventing transcripts from returning to the nucleus. However, as outlined in this review, several aspects of the mechanism by which transport factor binding and release are mediated remain unclear, as are the roles of accessory nuclear components in these processes. Moreover, the mechanisms by which completion of mRNA splicing and polyadenylation are recognized, together with how they are coordinated with nuclear export, also remain only partially characterized. One attractive hypothesis is that dissociating poly(A) polymerase from the cleavage and polyadenylation machinery could signal completion of mRNA maturation and thereby provide a mechanism for initiating nuclear export. The impressive array of genetic, molecular, cellular, and structural data that has been generated about these systems now provides many of the tools needed to define the precise mechanisms involved in these processes and how they are integrated.
Collapse
Affiliation(s)
- Murray Stewart
- From the MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
5
|
Fasken MB, Corbett AH, Stewart M. Structure-function relationships in the Nab2 polyadenosine-RNA binding Zn finger protein family. Protein Sci 2019; 28:513-523. [PMID: 30578643 PMCID: PMC6371209 DOI: 10.1002/pro.3565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The poly(A) RNA binding Zn finger ribonucleoprotein Nab2 functions to control the length of 3' poly(A) tails in Saccharomyces cerevisiae as well as contributing to the integration of the nuclear export of mature mRNA with preceding steps in the nuclear phase of the gene expression pathway. Nab2 is constructed from an N-terminal PWI-fold domain, followed by QQQP and RGG motifs and then seven CCCH Zn fingers. The nuclear pore-associated proteins Gfd1 and Mlp1 bind to opposite sides of the Nab2 N-terminal domain and function in the nuclear export of mRNA, whereas the Zn fingers, especially fingers 5-7, bind to A-rich regions of mature transcripts and function to regulate poly(A) tail length as well as mRNA compaction prior to nuclear export. Nab2 Zn fingers 5-7 have a defined spatial arrangement, with fingers 5 and 7 arranged on one side of the cluster and finger 6 on the other side. This spatial arrangement facilitates the dimerization of Nab2 when bound to adenine-rich RNAs and regulates both the termination of 3' polyadenylation and transcript compaction. Nab2 also functions to coordinate steps in the nuclear phase of the gene expression pathway, such as splicing and polyadenylation, with the generation of mature mRNA and its nuclear export. Nab2 orthologues in higher Eukaryotes have similar domain structures and play roles associated with the regulation of splicing and polyadenylation. Importantly, mutations in the gene encoding the human Nab2 orthologue ZC3H14 and cause intellectual disability.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
6
|
Aibara S, Gordon JMB, Riesterer AS, McLaughlin SH, Stewart M. Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:1529-1538. [PMID: 28180315 PMCID: PMC5388407 DOI: 10.1093/nar/gkw1224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022] Open
Abstract
In Saccharomyces cerevisiae generation of export-competent mRNPs terminates the nuclear phase of the gene expression pathway and facilitates transport to the cytoplasm for translation. Nab2 functions in this process to control both mRNP compaction that facilitates movement through nuclear pore complexes and the length of transcript poly(A) tails. Nab2 has a modular structure that includes seven CCCH Zn fingers that bind to A-rich RNAs and fingers 5–7 are critical for these functions. Here, we demonstrate, using both biophysical and structural methods, that binding A11G RNA induces dimerization of Zn fingers 5–7 mediated by the novel spatial arrangement of the fingers promoting each RNA chain binding two protein chains. The dimerization of Nab2 induced by RNA binding provides a basis for understanding its function in both poly(A) tail length regulation and in the compaction of mature transcripts to facilitate nuclear export.
Collapse
Affiliation(s)
- Shintaro Aibara
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - James M B Gordon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Anja S Riesterer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
7
|
Kurshakova MM, Georgieva SG, Kopytova DV. Protein complexes coordinating mRNA export from the nucleus into the cytoplasm. Mol Biol 2016. [DOI: 10.1134/s0026893316050095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
9
|
Gavaldá S, Santos-Pereira JM, García-Rubio ML, Luna R, Aguilera A. Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening. PLoS Genet 2016; 12:e1005966. [PMID: 27035147 PMCID: PMC4818039 DOI: 10.1371/journal.pgen.1005966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Yra1 is an essential nuclear factor of the evolutionarily conserved family of hnRNP-like export factors that when overexpressed impairs mRNA export and cell growth. To investigate further the relevance of proper Yra1 stoichiometry in the cell, we overexpressed Yra1 by transforming yeast cells with YRA1 intron-less constructs and analyzed its effect on gene expression and genome integrity. We found that YRA1 overexpression induces DNA damage and leads to a transcription-associated hyperrecombination phenotype that is mediated by RNA:DNA hybrids. In addition, it confers a genome-wide replication retardation as seen by reduced BrdU incorporation and accumulation of the Rrm3 helicase. In addition, YRA1 overexpression causes a cell senescence-like phenotype and telomere shortening. ChIP-chip analysis shows that overexpressed Yra1 is loaded to transcribed chromatin along the genome and to Y’ telomeric regions, where Rrm3 is also accumulated, suggesting an impairment of telomere replication. Our work not only demonstrates that a proper stoichiometry of the Yra1 mRNA binding and export factor is required to maintain genome integrity and telomere homeostasis, but suggests that the cellular imbalance between transcribed RNA and specific RNA-binding factors may become a major cause of genome instability mediated by co-transcriptional replication impairment. Yra1 is an essential nuclear RNA-binding protein that plays a role in mRNA export in Saccharomyces cerevisiae. The cellular levels of Yra1 are tightly auto-regulated by splicing of an unusual intron in its pre-mRNA, removal of which causes Yra1 overexpression that results in a dominant-negative growth defect and mRNA export defect. We wondered whether or not YRA1 overexpression has an effect on genome integrity that could explain the loss of cell viability. Our analyses reveal that YRA1 overexpression causes DNA damage, confers a hyperrecombination phenotype that depends on transcription and that is mediated by RNA:DNA hybrids. YRA1 overexpression also leads to a cell senescence-like phenotype and telomere shortening. We show by ChIP-chip analysis that Yra1 binds to active chromatin and Y’ telomeric regions when it is overexpressed, in agreement with a possible role of this mRNP factor in the maintenance of telomere integrity. Our data indicate that YRA1 overexpression correlates with replication impairment as inferred by the reduction of BrdU incorporation and the increase of Rrm3 recruitment, a helicase involved in replication fork progression, at transcribed genes and Y’ regions. We conclude that the stoichiometry of specific RNA-binding factors such as Yra1 at telomeres is critical for genome integrity and for preventing transcription-replication conflicts.
Collapse
Affiliation(s)
- Sandra Gavaldá
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - José M. Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - María L. García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- * E-mail: (AA); (RL)
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- * E-mail: (AA); (RL)
| |
Collapse
|
10
|
Abstract
Reuter et al. show that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNA polymerase III (RNAPIII) transcribed genes. Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. RNA polymerase III (RNAPIII) synthesizes most small RNAs, the most prominent being tRNAs. Although the basic mechanism of RNAPIII transcription is well understood, recent evidence suggests that additional proteins play a role in RNAPIII transcription. Here, we discovered by a genome-wide approach that Nab2, a poly(A)-binding protein important for correct poly(A) tail length and nuclear mRNA export, is present at all RNAPIII transcribed genes. The occupancy of Nab2 at RNAPIII transcribed genes is dependent on transcription. Using a novel temperature-sensitive allele of NAB2, nab2-34, we show that Nab2 is required for the occupancy of RNAPIII and TFIIIB at target genes. Furthermore, Nab2 interacts with RNAPIII, TFIIIB, and RNAPIII transcripts. Importantly, impairment of Nab2 function causes an RNAPIII transcription defect in vivo and in vitro. Taken together, we establish Nab2, an important mRNA biogenesis factor, as a novel player required for RNAPIII transcription by stabilizing TFIIIB and RNAPIII at promoters.
Collapse
Affiliation(s)
- L Maximilian Reuter
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Dominik M Meinel
- Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
11
|
Zhou H, Liu Q, Shi T, Yu Y, Lu H. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation. Yeast 2015; 32:643-55. [DOI: 10.1002/yea.3085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
12
|
Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production. Cell Rep 2015; 12:128-139. [PMID: 26119729 DOI: 10.1016/j.celrep.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022] Open
Abstract
Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| | - Pawel Olszewski
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| |
Collapse
|
13
|
Felipe-Abrio I, Lafuente-Barquero J, García-Rubio ML, Aguilera A. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J 2014; 34:236-50. [PMID: 25452497 DOI: 10.15252/embj.201488544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. However, we know little of the possible role, if any, of the RNA polymerase (RNAP) in this process. Here, we analyzed 4 specific yeast RNAPII mutants that show different phenotypes of genetic instability including hyper-recombination, DNA damage sensitivity and/or a strong dependency on double-strand break repair functions for viability. Three specific alleles of the RNAPII core, rpb1-1, rpb1-S751F and rpb9∆, cause a defect in replication fork progression, compensated for by additional origin firing, as the main action responsible for instability. The transcription elongation defects of rpb1-S751F and rpb9∆ plus our observation that rpb1-1 causes RNAPII retention on chromatin suggest that RNAPII could participate in facilitating fork progression upon a transcription-replication encounter. Our results imply that the RNAPII or ancillary factors actively help prevent transcription-associated genome instability.
Collapse
Affiliation(s)
- Irene Felipe-Abrio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
14
|
Santos-Pereira JM, García-Rubio ML, González-Aguilera C, Luna R, Aguilera A. A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions. Nucleic Acids Res 2014; 42:12000-14. [PMID: 25294824 PMCID: PMC4231764 DOI: 10.1093/nar/gku906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The THSC/TREX-2 complex of Saccharomyces cerevisiae mediates the anchoring of transcribed genes to the nuclear pore, linking transcription elongation with mRNA export and genome stability, as shown for specific reporters. However, it is still unknown whether the function of TREX-2 is global and the reason for its relevant role in genome integrity. Here, by studying two TREX-2 representative subunits, Thp1 and Sac3, we show that TREX-2 has a genome-wide role in gene expression. Both proteins show similar distributions along the genome, with a gradient disposition at active genes that increases towards the 3′ end. Thp1 and Sac3 have a relevant impact on the expression of long, G+C-rich and highly transcribed genes. Interestingly, replication impairment detected by the genome-wide accumulation of the replicative Rrm3 helicase is increased preferentially at highly expressed genes in the thp1Δ and sac3Δ mutants analyzed. Therefore, our work provides evidence of a function of TREX-2 at the genome-wide level and suggests a role for TREX-2 in preventing transcription–replication conflicts, as a source of genome instability derived from a defective messenger ribonucleoprotein particle (mRNP) biogenesis.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain
| |
Collapse
|
15
|
Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis. BMC Bioinformatics 2014; 15:322. [PMID: 25267386 PMCID: PMC4262117 DOI: 10.1186/1471-2105-15-322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scale and complexity of genomic data lend themselves to analysis using sophisticated mathematical techniques to yield information that can generate new hypotheses and so guide further experimental investigations. An ensemble clustering method has the ability to perform consensus clustering over the same set of genes from different microarray datasets by combining results from different clustering methods into a single consensus result. RESULTS In this paper we have performed comprehensive analysis of forty yeast microarray datasets. One recently described Bi-CoPaM method can analyse expressions of the same set of genes from various microarray datasets while using different clustering methods, and then combine these results into a single consensus result whose clusters' tightness is tunable from tight, specific clusters to wide, overlapping clusters. This has been adopted in a novel way over genome-wide data from forty yeast microarray datasets to discover two clusters of genes that are consistently co-expressed over all of these datasets from different biological contexts and various experimental conditions. Most strikingly, average expression profiles of those clusters are consistently negatively correlated in all of the forty datasets while neither profile leads or lags the other. CONCLUSIONS The first cluster is enriched with ribosomal biogenesis genes. The biological processes of most of the genes in the second cluster are either unknown or apparently unrelated although they show high connectivity in protein-protein and genetic interaction networks. Therefore, it is possible that this mostly uncharacterised cluster and the ribosomal biogenesis cluster are transcriptionally oppositely regulated by some common machinery. Moreover, we anticipate that the genes included in this previously unknown cluster participate in generic, in contrast to specific, stress response processes. These novel findings illuminate coordinated gene expression in yeast and suggest several hypotheses for future experimental functional work. Additionally, we have demonstrated the usefulness of the Bi-CoPaM-based approach, which may be helpful for the analysis of other groups of (microarray) datasets from other species and systems for the exploration of global genetic co-expression.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - Rui Fa
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - David J Roberts
- />National Health Service Blood and Transplant, Oxford, UK
- />Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Asoke K Nandi
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
- />Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Tuck AC, Tollervey D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 2013; 154:996-1009. [PMID: 23993093 PMCID: PMC3778888 DOI: 10.1016/j.cell.2013.07.047] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/25/2013] [Accepted: 07/31/2013] [Indexed: 01/30/2023]
Abstract
Eukaryotic genomes generate a heterogeneous ensemble of mRNAs and long noncoding RNAs (lncRNAs). LncRNAs and mRNAs are both transcribed by Pol II and acquire 5′ caps and poly(A) tails, but only mRNAs are translated into proteins. To address how these classes are distinguished, we identified the transcriptome-wide targets of 13 RNA processing, export, and turnover factors in budding yeast. Comparing the maturation pathways of mRNAs and lncRNAs revealed that transcript fate is largely determined during 3′ end formation. Most lncRNAs are targeted for nuclear RNA surveillance, but a subset with 3′ cleavage and polyadenylation features resembling the mRNA consensus can be exported to the cytoplasm. The Hrp1 and Nab2 proteins act at this decision point, with dual roles in mRNA cleavage/polyadenylation and lncRNA surveillance. Our data also reveal the dynamic and heterogeneous nature of mRNA maturation, and highlight a subset of “lncRNA-like” mRNAs regulated by the nuclear surveillance machinery. Transcriptome-wide analysis shows dynamic assembly of ribonucleoprotein particles LncRNA and mRNA subclasses undergo distinct maturation and turnover pathways Transcript fate is determined during 3′ end formation Transcript classes overlap, with many “mRNA-like” lncRNAs and “lncRNA-like” mRNAs
Collapse
Affiliation(s)
- Alex Charles Tuck
- The University of Edinburgh, Wellcome Trust Centre for Cell Biology, Michael Swann Building, Kings Buildings, Edinburgh EH9 3JR, UK
| | - David Tollervey
- The University of Edinburgh, Wellcome Trust Centre for Cell Biology, Michael Swann Building, Kings Buildings, Edinburgh EH9 3JR, UK.
| |
Collapse
|
17
|
Kuhlmann SI, Valkov E, Stewart M. Structural basis for the molecular recognition of polyadenosine RNA by Nab2 Zn fingers. Nucleic Acids Res 2013; 42:672-80. [PMID: 24071581 PMCID: PMC3874189 DOI: 10.1093/nar/gkt876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast poly(A) RNA binding protein, Nab2, facilitates poly(A) tail length regulation together with targeting transcripts to nuclear pores and their export to the cytoplasm. Nab2 binds polyadenosine RNA primarily through a tandem repeat of CCCH Zn fingers. We report here the 2.15 Å resolution crystal structure of Zn fingers 3–5 of Chaetomium thermophilum Nab2 bound to polyadenosine RNA and establish the structural basis for the molecular recognition of adenosine ribonucleotides. Zn fingers 3 and 5 each bind two adenines, whereas finger 4 binds only one. In each case, the purine ring binds in a surface groove, where it stacks against an aromatic side chain, with specificity being provided by a novel pattern of H-bonds, most commonly between purine N6 and a Zn-coordinated cysteine supplemented by H-bonds between purine N7 and backbone amides. Residues critical for adenine binding are conserved between species and provide a code that allows prediction of finger-binding stoichiometry based on their sequence. Moreover, these results indicate that, in addition to poly(A) tails, Nab2 can also recognize sequence motifs elsewhere in transcripts in which adenosines are placed at key positions, consistent with its function in mRNP organization and compaction as well as poly(A) tail length regulation.
Collapse
Affiliation(s)
- Sonja I Kuhlmann
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
18
|
García A, Collin A, Calvo O. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. Mol Biol Cell 2012; 23:4297-312. [PMID: 22973055 PMCID: PMC3484106 DOI: 10.1091/mbc.e12-04-0331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3'-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5-Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5-Rpb1 complex levels and consequently transcription elongation rate.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
19
|
Schmid M, Jensen TH. Transcription-associated quality control of mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:158-68. [PMID: 22982197 DOI: 10.1016/j.bbagrm.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 01/06/2023]
Abstract
Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA synthesis process so as to discard, retain or transcriptionally silence unwanted molecules. In this review we discuss the somewhat paradoxical circumstance that the retention or turnover of RNA is often linked to its synthesis. This occurs via the association of chromatin, or the transcription elongation complex, with RNA degradation (co)factors. Although our main focus is on protein-coding genes, we also discuss mechanisms of transcription-connected turnover of non-protein-coding RNA from where important general principles are derived. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|
20
|
Cho YS, Jang S, Yoon JH. Isolation of a novel rmn1 gene genetically linked to spnab2 with respect to mRNA export in fission yeast. Mol Cells 2012; 34:315-21. [PMID: 22936388 PMCID: PMC3887835 DOI: 10.1007/s10059-012-0157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022] Open
Abstract
In fission yeast, Schizosaccharomyces pombe, the spnab2 gene encodes an ortholog of the budding yeast nuclear abundant poly(A)(+) RNA-binding protein 2 (Nab2) that is an essential protein required for both mRNA biogenesis and nuclear export of mRNA to the cytoplasm. We have previously isolated three mutants (SLnab1-3) that showed synthetic lethality under the repressed condition of spnab2 expression. In this study, we isolated a novel rmn1 gene as a multicopy suppressor that complemented the defects in growth and mRNA export of SLnab1 mutant cells. The rmn1 gene contained three introns and encoded a 589 amino-acid protein with the RNA recognition motif (RRM) in the central region. The Δrmn1 null mutant was viable but showed a s light mRNA export defect. However, its over-expression caused a deleterious effect on growth accompanied by intense accumulation of poly(A)(+) RNA in the nucleus. The combination of Δrmn1 with Δspnab2 or Δspmex67 also inhibited growth. In addition, Rmn1p was associated with Rae1p in vivo. These results suggest that rmn1 is a novel gene that is functionally linked to spnab2.
Collapse
Affiliation(s)
- Ye-Seul Cho
- School of Biological Sciences and Chemistry, and Basic Sciences Research Institute, Sungshin Women’s University, Seoul 142-732,
Korea
| | - Sooyeon Jang
- School of Biological Sciences and Chemistry, and Basic Sciences Research Institute, Sungshin Women’s University, Seoul 142-732,
Korea
| | - Jin Ho Yoon
- School of Biological Sciences and Chemistry, and Basic Sciences Research Institute, Sungshin Women’s University, Seoul 142-732,
Korea
| |
Collapse
|
21
|
Soucek S, Corbett AH, Fasken MB. The long and the short of it: the role of the zinc finger polyadenosine RNA binding protein, Nab2, in control of poly(A) tail length. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:546-54. [PMID: 22484098 PMCID: PMC3345082 DOI: 10.1016/j.bbagrm.2012.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022]
Abstract
In eukaryotic cells, addition of poly(A) tails to transcripts by 3'-end processing/polyadenylation machinery is a critical step in gene expression. The length of the poly(A) tail influences the stability, nuclear export and translation of mRNA transcripts. Control of poly(A) tail length is thus an important mechanism to regulate the abundance and ultimate translation of transcripts. Understanding the global regulation of poly(A) tail length will require dissecting the contributions of enzymes, regulatory factors, and poly(A) binding proteins (Pabs) that all cooperate to regulate polyadenylation. A recent addition to the Pab family is the CCCH-type zinc finger class of Pabs that includes S. cerevisiae Nab2 and its human counterpart, ZC3H14. In S. cerevisiae, Nab2 is an essential nuclear Pab implicated in both poly(A) RNA export from the nucleus and control of poly(A) tail length. Consistent with an important role in regulation of poly(A) tail length, depletion of Nab2 from yeast cells results in hyperadenylation of poly(A) RNA. In this review, we focus on the role of Nab2 in poly(A) tail length control and speculate on potential mechanisms by which Nab2 could regulate poly(A) tail length based on reported physical and genetic interactions. We present models, illustrating how Nab2 could regulate poly(A) tail length by limiting polyadenylation and/or enhancing trimming. Given that mutation of the gene encoding the human Nab2 homologue, ZC3H14, causes a form of autosomal recessive intellectual disability, we also speculate on how mutations in a gene encoding a ubiquitously expressed Pab lead specifically to neurological defects. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Sharon Soucek
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Milo B. Fasken
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
|
23
|
Kelly S, Pak C, Garshasbi M, Kuss A, Corbett AH, Moberg K. New kid on the ID block: neural functions of the Nab2/ZC3H14 class of Cys₃His tandem zinc-finger polyadenosine RNA binding proteins. RNA Biol 2012; 9:555-62. [PMID: 22614829 DOI: 10.4161/rna.20187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyadenosine RNA binding proteins (Pabs) play critical roles in regulating the polyadenylation, nuclear export, stability, and translation of cellular RNAs. Although most Pabs are ubiquitously expressed and are thought to play general roles in post-transcriptional regulation, mutations in genes encoding these factors have been linked to tissue-specific diseases including muscular dystrophy and now intellectual disability (ID). Our recent work defined this connection to ID, as we showed that mutations in the gene encoding the ubiquitously expressed Cys3His tandem zinc-finger (ZnF) Pab, ZC3H14 (Zinc finger protein, CCCH-type, number 14) are associated with non-syndromic autosomal recessive intellectual disability (NS-ARID). This study provided a first link between defects in Pab function and a brain disorder, suggesting that ZC3H14 plays a required role in regulating RNAs in nervous system cells. Here we highlight key questions raised by our study of ZC3H14 and its ortholog in the fruit fly Drosophila melanogaster, dNab2, and comment on future approaches that could provide insights into the cellular and molecular roles of this class of zinc finger-containing Pabs. We propose a summary model depicting how ZC3H14-type Pabs might play particularly important roles in neuronal RNA metabolism.
Collapse
Affiliation(s)
- Seth Kelly
- Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | | | | | | | | | | |
Collapse
|
24
|
Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M. Structural basis for the assembly and disassembly of mRNA nuclear export complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:578-92. [PMID: 22406340 DOI: 10.1016/j.bbagrm.2012.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/17/2012] [Indexed: 12/17/2022]
Abstract
Most of the individual components of the nuclear elements of the gene expression pathway have been identified and high-resolution structural information is becoming available for many of them. Information is also starting to become available on the larger complexes they form and is beginning to give clues about how the dynamics of their interactions generate function. Although the translocation of export-competent messenger ribonucleoprotein particles (mRNPs) through the nuclear pore transport channel that is mediated by interactions with nuclear pore proteins (nucleoporins) is relatively well understood, the precise molecular mechanisms underlying the assembly of export-competent mRNPs in the nucleus and their Dbp5-mediated disassembly in the cytoplasm is less well defined. Considerable information has been obtained on the structure of Dbp5 in its different nucleotide-bound states and in complex with Gle1 or Nup159/NUP214. Although the precise manner by which the Dbp5 ATPase cycle is coupled to mRNP remodelling remains to be established, current models capture many key details of this process. The formation of export-competent mRNPs in the nucleus remains an elusive component of this pathway and the precise nature of the remodelling that generates these mRNPs as well as detailed understanding of the molecular mechanisms by which this step is integrated with the transcriptional, splicing and polyadenylation machinery by the TREX and TREX-2 complexes remain obscure. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Eugene Valkov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
25
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|