1
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
2
|
Nobiletti N, Liu J, Glading AJ. KRIT1-mediated regulation of neutrophil adhesion and motility. FEBS J 2023; 290:1078-1095. [PMID: 36107440 PMCID: PMC9957810 DOI: 10.1111/febs.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
Abstract
Loss of Krev interaction-trapped-1 (KRIT1) expression leads to the development of cerebral cavernous malformations (CCM), a disease in which abnormal blood vessel formation compromises the structure and function of the blood-brain barrier. The role of KRIT1 in regulating endothelial function is well-established. However, several studies have suggested that KRIT1 could also play a role in regulating nonendothelial cell types and, in particular, immune cells. In this study, we generated a mouse model with neutrophil-specific deletion of KRIT1 in order to investigate the effect of KRIT1 deficiency on neutrophil function. Neutrophils isolated from adult Ly6Gtm2621(cre)Arte Krit1flox/flox mice had a reduced ability to attach and spread on the extracellular matrix protein fibronectin and exhibited a subsequent increase in migration. However, adhesion to and migration on ICAM-1 was unchanged. In addition, we used a monomeric, fluorescently-labelled fragment of fibronectin to show that integrin activation is reduced in the absence of KRIT1 expression, though β1 integrin expression appears unchanged. Finally, neutrophil migration in response to lipopolysaccharide-induced inflammation in the lung was decreased, as shown by reduced cell number and myeloperoxidase activity in lavage samples from Krit1PMNKO mice. Altogether, we show that KRIT1 regulates neutrophil adhesion and migration, likely through regulation of integrin activation, which can lead to altered inflammatory responses in vivo.
Collapse
Affiliation(s)
- Nicholas Nobiletti
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Jing Liu
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, NY, USA
| | - Angela J. Glading
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, NY, USA
| |
Collapse
|
3
|
Liu W, Hsu AY, Wang Y, Lin T, Sun H, Pachter JS, Groisman A, Imperioli M, Yungher FW, Hu L, Wang P, Deng Q, Fan Z. Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J Leukoc Biol 2021; 111:771-791. [PMID: 34494308 DOI: 10.1002/jlb.1a0720-471r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that β2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited β2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for β2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of β2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in β2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects β2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joel S Pachter
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | | | | | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Choi BH, Kou Z, Colon TM, Chen CH, Chen Y, Dai W. Identification of Radil as a Ras binding partner and putative activator. J Biol Chem 2021; 296:100314. [PMID: 33482197 PMCID: PMC7949112 DOI: 10.1016/j.jbc.2021.100314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Ras genes are among the most frequently mutated oncogenes in human malignancies. To date, there are no successful anticancer drugs in the clinic that target Ras proteins or their pathways. Therefore, it is imperative to identify and characterize new components that regulate Ras activity or mediate its downstream signaling. To this end, we used a combination of affinity-pulldown and mass spectrometry to search for proteins that are physically associated with KRas. One of the top hits was Radil, a gene product with a Ras-association domain. Radil is known to be a downstream effector of Rap1, inhibiting RhoA signaling to regulate cell adhesion and migration. We demonstrate that Radil interacted with all three isoforms of Ras including HRas, NRas, and KRas, although it exhibited the strongest interaction with KRas. Moreover, Radil interacts with GTP-bound Ras more efficiently, suggesting a possibility that Radil may be involved in Ras activation. Supporting this, ectopic expression of Radil led to transient activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase; Radil knockdown resulted in weakened activation of Ras downstream signaling components, which was coupled with decreased cell proliferation and invasion, and reduced expression of mesenchymal cell markers. Moreover, Radil knockdown greatly reduced the number of adhesion foci and depolymerized actin filaments, molecular processes that facilitate cancer cell migration. Taken together, our present studies strongly suggest that Radil is an important player for regulating Ras signaling, cell adhesion, and the epithelial–mesenchymal transition and may provide new directions for Ras-related anticancer drug development.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Ziyue Kou
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Tania Marlyn Colon
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Chih-Hong Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, California, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, California, USA
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA.
| |
Collapse
|
5
|
Kelly MR, Kostyrko K, Han K, Mooney NA, Jeng EE, Spees K, Dinh PT, Abbott KL, Gwinn DM, Sweet-Cordero EA, Bassik MC, Jackson PK. Combined Proteomic and Genetic Interaction Mapping Reveals New RAS Effector Pathways and Susceptibilities. Cancer Discov 2020; 10:1950-1967. [PMID: 32727735 PMCID: PMC7710624 DOI: 10.1158/2159-8290.cd-19-1274] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Activating mutations in RAS GTPases drive many cancers, but limited understanding of less-studied RAS interactors, and of the specific roles of different RAS interactor paralogs, continues to limit target discovery. We developed a multistage discovery and screening process to systematically identify genes conferring RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry, we generated a protein-protein interaction map of RAS interactors and pathway components containing hundreds of interactions. From this network, we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for KRAS-dependent genetic interactions (GI). This approach identified new RAS effectors, including the adhesion controller RADIL and the endocytosis regulator RIN1, and >250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of multiomic approaches to uncover synthetic lethal combinations specific for hitherto untreatable cancer genotypes. SIGNIFICANCE: We establish a deep network of protein-protein and genetic interactions in the RAS pathway. Many interactions validated here demonstrate important specificities and redundancies among paralogous RAS regulators and effectors. By comparing synthetic lethal interactions across KRAS-dependent and KRAS-independent cell lines, we identify several new combination therapy targets for RAS-driven cancers.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Marcus R Kelly
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California.,Program in Cancer Biology, Stanford University School of Medicine, Stanford, California
| | - Kaja Kostyrko
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Edwin E Jeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Phuong T Dinh
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Dana M Gwinn
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California.
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
6
|
Smrcka AV, Fisher I. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Cell Mol Life Sci 2019; 76:4447-4459. [PMID: 31435698 PMCID: PMC6842434 DOI: 10.1007/s00018-019-03275-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
G-protein βγ subunits are key participants in G-protein signaling. These subunits facilitate interactions between receptors and G proteins that are critical for the G protein activation cycle at the plasma membrane. In addition, they play roles in directly transducing signals to an ever expanding range of downstream targets, including integral membrane and cytosolic proteins. Emerging data indicate that Gβγ may play additional roles at intracellular compartments including endosomes, the Golgi apparatus, and the nucleus. Here, we discuss the molecular and structural basis for their ability to coordinate this wide range of cellular activities.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA.
| | - Isaac Fisher
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, 14629, USA
| |
Collapse
|
7
|
Fu Q, Yang F, Liao M, Feeney NJ, Deng K, Serifis N, Wei L, Yang H, Chen K, Deng S, Markmann JF. Rap GTPase Interactor: A Potential Marker for Cancer Prognosis Following Kidney Transplantation. Front Oncol 2019; 9:737. [PMID: 31448237 PMCID: PMC6692533 DOI: 10.3389/fonc.2019.00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/23/2019] [Indexed: 11/17/2022] Open
Abstract
Post-transplant (post-Tx) kidney cancer has become the second-highest cause of death in kidney recipients. Late diagnosis and treatment are the main reasons for high mortality. Further research into early diagnosis and potential treatment is therefore required. In this current study, through genome-wide RNA-Seq profile analysis of post-Tx malignant blood samples and post-Tx non-malignant control blood samples (CTRL-Tx), we found Rap GTPase Interactor (RADIL) and Aprataxin (APTX) to be the most meaningful markers for cancer diagnosis. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) of the RADIL-APTX signature model was 0.92 (P < 0.0001). Similarly, the AUC of RADIL alone was 0.91 (P < 0.0001) and that of APTX was 0.81 (P = 0.001). Additionally, using a semi-supervised method, we found that RADIL alone could better predict malignancies in kidney transplantation recipients than APTX alone. Kaplan-Meier analysis indicated that RADIL was expressed significantly higher in the early stages (I and II) of kidney, liver, stomach, and pancreatic cancer, suggesting the potential use of RADIL in early diagnosis. Multivariable Cox regression analysis found that RADIL together with other factors (including age, stage III, stage IV and CD8+ T cells) play a key role in kidney cancer development. Among those factors, RADIL could promote kidney cancer development (HR > 1, P < 0.05) while CD8+ T cells could inhibit kidney cancer development (HR < 1, P < 0.05). RADIL may be a new immunotherapy target for kidney cancer post kidney transplantation.
Collapse
Affiliation(s)
- Qiang Fu
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Fan Yang
- Women and Children Health Care Center of Luoyang, Luoyang, China
| | - Minxue Liao
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Noel J Feeney
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kevin Deng
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikolaos Serifis
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Kai Chen
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Shaoping Deng
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Subramanian BC, Majumdar R, Parent CA. The role of the LTB 4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin Immunol 2018; 33:16-29. [PMID: 29042024 DOI: 10.1016/j.smim.2017.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
Directed leukocyte migration is a hallmark of inflammatory immune responses. Leukotrienes are derived from arachidonic acid and represent a class of potent lipid mediators of leukocyte migration. In this review, we summarize the essential steps leading to the production of LTB4 in leukocytes. We discuss the recent findings on the exosomal packaging and transport of LTB4 in the context of chemotactic gradients formation and regulation of leukocyte recruitment. We also discuss the dynamic roles of the LTB4 receptors, BLT1 and BLT2, in mediating chemotactic signaling in leukocytes and contrast them to other structurally related leukotrienes that bind to distinct GPCRs. Finally, we highlight the specific roles of the LTB4-BLT1 axis in mediating signal-relay between chemotaxing neutrophils and its potential contribution to a wide variety of inflammatory conditions including tumor progression and metastasis, where LTB4 is emerging as a key signaling component.
Collapse
Affiliation(s)
- Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States.
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, United States; Department of Pharmacology, University of Michigan School of Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
9
|
Small GTPase-dependent regulation of leukocyte-endothelial interactions in inflammation. Biochem Soc Trans 2018; 46:649-658. [PMID: 29743277 DOI: 10.1042/bst20170530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.
Collapse
|
10
|
To JY, Smrcka AV. Activated heterotrimeric G protein α i subunits inhibit Rap-dependent cell adhesion and promote cell migration. J Biol Chem 2017; 293:1570-1578. [PMID: 29259127 DOI: 10.1074/jbc.ra117.000964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/05/2017] [Indexed: 11/06/2022] Open
Abstract
Our recent work uncovered novel roles for activated Gαi signaling in the regulation of neutrophil polarity and adhesion. GαiGTP-mediated enhancement of neutrophil polarization was dependent on inhibition of cAMP/PKA signaling, whereas reversal of Gβγ-stimulated adhesion was cAMP/PKA independent. To uncover the mechanism for Gαi regulation of adhesion, we analyzed the effects of constitutively active Gαi1(Q204L) expression on adhesion driven by constitutively active Rap1a(G12V) or its downstream effector Radil in neutrophil-like HL-60 cells, or in HT-1080 fibrosarcoma cells. In HT-1080 cells, Rap1a(G12V) or Radil cause an increase in cell spreading and adhesion to fibronectin, which are both reversed by Gαi1(Q204L) but not WT Gαi1 In contrast, Gαi1(Q204L) did not reverse Rap1-GTP-interacting adaptor molecule (RIAM)-dependent increases in cell adhesion. This indicates that adhesion regulation by Gαi-GTP occurs downstream of Rap1a and Radil, but is upstream of components such as integrins and talin that are regulated by both Radil and RIAM. HL-60 neutrophil-like cells expressing Rap1a(G12V) or Radil have an elongated phenotype because of enhanced uropod adhesion as they attempt to migrate on fibronectin. This elongated phenotype driven by Rap1a(G12V) or Radil is reversed by Gαi1(Q204L), but not by WT Gαi1 expression, suggesting that Gαi-GTP also regulates adhesion in immune cells at the level of, or downstream of, Radil. These data identify a novel role of Gαi-GTP in regulation of cell adhesion and migration. Cell migration involves cycles of adhesion and de-adhesion, and we propose that the dynamic spatiotemporal balance between Gβγ-promoted adhesion and Gαi-GTP reversal of adhesion is important for this process.
Collapse
Affiliation(s)
- Jesi Y To
- From the Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York, 14623 and
| | - Alan V Smrcka
- From the Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York, 14623 and .,the Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
11
|
Li P, Karaczyn AA, McGlauflin R, Favreau-Lessard AJ, Jachimowicz E, Vary CP, Xu K, Wojchowski DM, Sathyanarayana P. Novel roles for podocalyxin in regulating stress myelopoiesis, Rap1a, and neutrophil migration. Exp Hematol 2017; 50:77-83.e6. [PMID: 28408238 DOI: 10.1016/j.exphem.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022]
Abstract
Podocalyxin (Podxl) is a CD34 orthologue and cell surface sialomucin reported to have roles in renal podocyte diaphragm slit development; vascular cell integrity; and the progression of blood, breast, and prostate cancers. Roles for Podxl during nonmalignant hematopoiesis, however, are largely undefined. We have developed a Vav-Cre Podxl knockout (KO) mouse model, and report on novel roles for Podxl in governing stress myelopoiesis. At steady state, Podxl expression among hematopoietic progenitor cells was low level but was induced by granulocyte colony-stimulating factor (G-CSF) in myeloid progenitors and by thrombopoietin in human stem cells. In keeping with low-level Podxl expression at steady state, Vav-Cre deletion of Podxl did not markedly alter peripheral blood cell levels. A G-CSF challenge in Podxl-KO mice, in contrast, hyperelevated peripheral blood neutrophil and monocyte levels. Podxl-KO also substantially heightened neutrophil levels after 5-fluorouracil myeloablation. These loss-of-function phenotypes were selective, and Podxl-KO did not alter lymphocyte, basophil, or eosinophil levels. Within bone marrow (and after G-CSF challenge), Podxl deletion moderately decreased colony forming units-granulocytes, eyrthrocytes, monocyte/macrophages, megakaryocytes and CD16/32posCD11bpos progenitors but did not affect Gr-1pos cell populations. Notably, Podxl-KO did significantly heighten peripheral blood neutrophil migration capacities. To interrogate Podxl's action mechanisms, a co-immunoprecipitation plus liquid chromatography-mass spectrometry approach was applied using hematopoietic progenitors from G-CSF-challenged mice. Rap1a, a Ras-related small GTPase, was a predominant co-retrieved Podxl partner. In bone marrow human progenitor cells, Podxl-KO led to heightened G-CSF activation of Rap1aGTP, and Rap1aGTP inhibition attenuated Podxl-KO neutrophil migration. Studies have revealed novel roles for Podxl as an important modulator of neutrophil and monocyte formation and of Rap1a activation during stress hematopoiesis.
Collapse
Affiliation(s)
- Pan Li
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Aldona A Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Rose McGlauflin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | | | - Edward Jachimowicz
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Calvin P Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Kailin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Don M Wojchowski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Pradeep Sathyanarayana
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Abstract
Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.
Collapse
Affiliation(s)
- Yi-Lei Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruo-Chen Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ken Cheng
- Sun Yat-sen University, Guangzhou 510275, China
| | - Brian Z Ring
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
13
|
Gera N, Swanson KD, Jin T. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells. J Leukoc Biol 2016; 101:239-251. [PMID: 27493245 DOI: 10.1189/jlb.2a1215-572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have emerged as key regulators of cytoskeletal rearrangement that are required for directed cell migration. Whereas it is known that β-arrestins are required for formyl-Met-Leu-Phe receptor (FPR) recycling, less is known about their role in regulating FPR-mediated neutrophil chemotaxis. Here, we show that β-arrestin 1 (ArrB1) coaccumulated with F-actin within the leading edge of neutrophil-like HL-60 cells during chemotaxis, and its knockdown resulted in markedly reduced migration within fMLP gradients. The small GTPase Ras-related protein 2 (Rap2) was found to bind ArrB1 under resting conditions but dissociated upon fMLP stimulation. The FPR-dependent activation of Rap2 required ArrB1 but was independent of Gαi activity. Significantly, depletion of either ArrB1 or Rap2 resulted in reduced chemotaxis and defects in cellular repolarization within fMLP gradients. These data strongly suggest a model in which FPR is able to direct ArrB1 and other bound proteins that are required for lamellipodial extension to the leading edge in migrating neutrophils, thereby orientating and directing cell migration.
Collapse
Affiliation(s)
- Nidhi Gera
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| | - Kenneth D Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| |
Collapse
|
14
|
Gβγ subunits-Different spaces, different faces. Pharmacol Res 2016; 111:434-441. [PMID: 27378564 DOI: 10.1016/j.phrs.2016.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Gβγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gβγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gβγ roles have reshaped our understanding of how important Gβγ signalling is compared to our original notion of Gβγ subunits as simple negative regulators of Gα subunits. Gβγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gβγ.
Collapse
|
15
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
16
|
Di J, Cao H, Tang J, Lu Z, Gao K, Zhu Z, Zheng J. Rap2B promotes cell proliferation, migration and invasion in prostate cancer. Med Oncol 2016; 33:58. [PMID: 27154636 DOI: 10.1007/s12032-016-0771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Rap2B, a member of the Ras family of small GTP-binding proteins, reportedly presents a high level of expression in various human tumors and plays a significant role in the development of tumor. However, the function of Rap2B in prostate cancer (PCa) remains unclear. We elucidated the stimulative role of Rap2B in PCa cell proliferation, migration and invasion by means of the CCK-8 cell proliferation assay, cell cycle analysis and transwell migration assay. Western blot analysis uncovered that elevated Rap2B leads to increased phosphorylation levels of FAK, suggesting that FAK-dependent pathway might be responsible for the effect of Rap2B on PCa cells migration and invasion. Inversely, FAK-specific inhibitor (PF-573228) can abort Rap2B-induced FAK phosphorylation. In vivo experiment confirmed that Rap2B positively regulated PCa growth and metastasis, as well as the expression of phosphorylated FAK. Collectively, these findings shed light on Rap2B as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Huan Cao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Juangjuan Tang
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, People's Republic of China.
| |
Collapse
|
17
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
18
|
Liu L, Gritz D, Parent CA. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol Biol Cell 2014; 25:1446-57. [PMID: 24600048 PMCID: PMC4004594 DOI: 10.1091/mbc.e14-01-0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
mTORC2 has been shown to be involved in cytoskeletal regulation, but the mechanisms by which this takes place are poorly understood. This study shows that PKCβII is specifically required for mTORC2-dependent activation of adenylyl cyclase 9 and back retraction during neutrophil chemotaxis to chemoattractants. Chemotaxis is a process by which cells polarize and move up a chemical gradient through the spatiotemporal regulation of actin assembly and actomyosin contractility, which ultimately control front protrusions and back retractions. We previously demonstrated that in neutrophils, mammalian target of rapamycin complex 2 (mTORC2) is required for chemoattractant-mediated activation of adenylyl cyclase 9 (AC9), which converts ATP into cAMP and regulates back contraction through MyoII phosphorylation. Here we study the mechanism by which mTORC2 regulates neutrophil chemotaxis and AC9 activity. We show that inhibition of protein kinase CβII (PKCβII) by CPG53353 or short hairpin RNA knockdown severely inhibits chemoattractant-induced cAMP synthesis and chemotaxis in neutrophils. Remarkably, PKCβII-inhibited cells exhibit specific and severe tail retraction defects. In response to chemoattractant stimulation, phosphorylated PKCβII, but not PKCα, is transiently translocated to the plasma membrane, where it phosphorylates and activates AC9. mTORC2-mediated PKCβII phosphorylation on its turn motif, but not its hydrophobic motif, is required for membrane translocation of PKCβII. Inhibition of mTORC2 activity by Rictor knockdown not only dramatically decreases PKCβII activity, but it also strongly inhibits membrane translocation of PKCβII. Together our findings show that PKCβII is specifically required for mTORC2-dependent AC9 activation and back retraction during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Lunhua Liu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
19
|
Kurki MI, Gaál EI, Kettunen J, Lappalainen T, Menelaou A, Anttila V, van 't Hof FNG, von und zu Fraunberg M, Helisalmi S, Hiltunen M, Lehto H, Laakso A, Kivisaari R, Koivisto T, Ronkainen A, Rinne J, Kiemeney LAL, Vermeulen SH, Kaunisto MA, Eriksson JG, Aromaa A, Perola M, Lehtimäki T, Raitakari OT, Salomaa V, Gunel M, Dermitzakis ET, Ruigrok YM, Rinkel GJE, Niemelä M, Hernesniemi J, Ripatti S, de Bakker PIW, Palotie A, Jääskeläinen JE. High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet 2014; 10:e1004134. [PMID: 24497844 PMCID: PMC3907358 DOI: 10.1371/journal.pgen.1004134] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form. Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is >2× increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760 Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of sIAs. The most promising loci (p<5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004 controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42×10-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17×10-8); 6q24.2 (MAF 2.6%, OR 1.87, p 1.87×10-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.08×-9). Two of the associations (5q31.3, 6q24.2) replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland (4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples tested (OR 1.27, p 1.87×10-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain, the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense genotype imputation and alternate phenotyping in search for variants associated with complex diseases.
Collapse
Affiliation(s)
- Mitja I. Kurki
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | - Emília Ilona Gaál
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Androniki Menelaou
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Verneri Anttila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Femke N. G. van 't Hof
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Mikael von und zu Fraunberg
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Lehto
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Koivisto
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Antti Ronkainen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Jaakko Rinne
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Lambertus A. L. Kiemeney
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mari A. Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Department of Internal Medicine, Vasa Central Hospital, Vasa, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Arpo Aromaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Central Hospital, Turku, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Murat Gunel
- Department of Neurosurgery, Department of Neurobiology and Department of Genetics, Program on Neurogenetics, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ynte M. Ruigrok
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Gabriel J. E. Rinkel
- UMC Utrecht Stroke Center, Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Juha Hernesniemi
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Paul I. W. de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Juha E. Jääskeläinen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Ahmed SM, Angers S. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling. J Recept Signal Transduct Res 2013; 33:177-83. [PMID: 23721574 DOI: 10.3109/10799893.2013.795972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res 2013; 355:375-96. [PMID: 24297047 DOI: 10.1007/s00441-013-1753-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.
Collapse
|