1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Palacios V, Kimble GC, Tootle TL, Buszczak M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J Cell Sci 2021; 134:237786. [PMID: 33632744 DOI: 10.1242/jcs.258391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Germ cells undergo distinct nuclear processes as they differentiate into gametes. Although these events must be coordinated to ensure proper maturation, the stage-specific transport of proteins in and out of germ cell nuclei remains incompletely understood. Our efforts to genetically characterize Drosophila genes that exhibit enriched expression in germ cells led to the finding that loss of the highly conserved Importin β/karyopherin family member Importin-9 (Ipo9, herein referring to Ranbp9) results in female and male sterility. Immunofluorescence and fluorescent in situ hybridization revealed that Ipo9KO mutants display chromosome condensation and segregation defects during meiosis. In addition, Ipo9KO mutant males form abnormally structured sperm and fail to properly exchange histones for protamines. Ipo9 physically interacts with proteasome proteins, and Ipo9 mutant males exhibit disruption of the nuclear localization of several proteasome components. Thus, Ipo9 coordinates the nuclear import of functionally related factors necessary for the completion of gametogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Victor Palacios
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett C Kimble
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Park JH, Chung CG, Park SS, Lee D, Kim KM, Jeong Y, Kim ES, Cho JH, Jeon YM, Shen CKJ, Kim HJ, Hwang D, Lee SB. Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3. eLife 2020; 9:60132. [PMID: 33305734 PMCID: PMC7748415 DOI: 10.7554/elife.60132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonjin Jeong
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Eun Seon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jae Ho Cho
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - C-K James Shen
- Taipei Medical University/Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hyung-Jun Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
4
|
Cheng L, Zhang Y, Zhang Y, Chen T, Xu YZ, Rong YS. Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development. PLoS Genet 2020; 16:e1009098. [PMID: 33085660 PMCID: PMC7605716 DOI: 10.1371/journal.pgen.1009098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/02/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
The 2,2,7-trimethylguanosine (TMG) cap is one of the first identified modifications on eukaryotic RNAs. TMG, synthesized by the conserved Tgs1 enzyme, is abundantly present on snRNAs essential for pre-mRNA splicing. Results from ex vivo experiments in vertebrate cells suggested that TMG ensures nuclear localization of snRNAs. Functional studies of TMG using tgs1 mutations in unicellular organisms yield results inconsistent with TMG being indispensable for either nuclear import or splicing. Utilizing a hypomorphic tgs1 mutation in Drosophila, we show that TMG reduction impairs germline development by disrupting the processing, particularly of introns with smaller sizes and weaker splice sites. Unexpectedly, loss of TMG does not disrupt snRNAs localization to the nucleus, disputing an essential role of TMG in snRNA transport. Tgs1 loss also leads to defective 3' processing of snRNAs. Remarkably, stronger tgs1 mutations cause lethality without severely disrupting splicing, likely due to the preponderance of TMG-capped snRNPs. Tgs1, a predominantly nucleolar protein in Drosophila, likely carries out splicing-independent functions indispensable for animal development. Taken together, our results suggest that nuclear import is not a conserved function of TMG. As a distinctive structure on RNA, particularly non-coding RNA, we suggest that TMG prevents spurious interactions detrimental to the function of RNAs that it modifies.
Collapse
Affiliation(s)
- Lin Cheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yu Zhang
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States of America
| | - Tao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yong-Zhen Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yikang S. Rong
- Hengyang College of Medicine, University of South China, Hengyang, China
- * E-mail:
| |
Collapse
|
5
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
6
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Gayduk AI, Vlasov YV. Spinal muscular atrophy in samara region. Epidemiology, classification, prospects for health care. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:88-93. [DOI: 10.17116/jnevro201911912188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Adult Muscle Formation Requires Drosophila Moleskin for Proliferation of Wing Disc-Associated Muscle Precursors. Genetics 2017; 206:199-213. [PMID: 28249984 DOI: 10.1534/genetics.116.193813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/21/2017] [Indexed: 11/18/2022] Open
Abstract
Adult muscle precursor (AMP) cells located in the notum of the larval wing disc undergo rapid amplification and eventual fusion to generate the Drosophila melanogaster indirect flight muscles (IFMs). Here we find that loss of Moleskin (Msk) function in these wing disc-associated myoblasts reduces the overall AMP pool size, resulting in the absence of IFM formation. This myoblast loss is due to a decrease in the AMP proliferative capacity and is independent of cell death. In contrast, disruption of Msk during pupal myoblast proliferation does not alter the AMP number, suggesting that Msk is specifically required for larval AMP proliferation. It has been previously shown that Wingless (Wg) signaling maintains expression of the Vestigial (Vg) transcription factor in proliferating myoblasts. However, other factors that influence Wg-mediated myoblast proliferation are largely unknown. Here we examine the interactions between Msk and the Wg pathway in regulation of the AMP pool size. We find that a myoblast-specific reduction of Msk results in the absence of Vg expression and a complete loss of the Wg pathway readout β-catenin/Armadillo (Arm). Moreover, msk RNA interference knockdown abolishes expression of the Wg target Ladybird (Lbe) in leg disc myoblasts. Collectively, our results provide strong evidence that Msk acts through the Wg signaling pathway to control myoblast pool size and muscle formation by regulating Arm stability or nuclear transport.
Collapse
|
9
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
10
|
Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3072-7. [PMID: 26929354 DOI: 10.1073/pnas.1520401113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7-dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7-regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation.
Collapse
|
11
|
Cauchi RJ. Gem depletion: amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 2014; 20:574-81. [PMID: 24645792 DOI: 10.1111/cns.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| |
Collapse
|