1
|
SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proc Natl Acad Sci U S A 2023; 120:e2213703120. [PMID: 36574706 PMCID: PMC9910466 DOI: 10.1073/pnas.2213703120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Ufd1/Npl4/Cdc48 complex is a universal protein segregase that plays key roles in eukaryotic cellular processes. Its functions orchestrating the clearance or removal of polyubiquitylated targets are established; however, prior studies suggest that the complex also targets substrates modified by the ubiquitin-like protein SUMO. Here, we show that interactions between Ufd1 and SUMO enhance unfolding of substrates modified by SUMO-polyubiquitin hybrid chains by the budding yeast Ufd1/Npl4/Cdc48 complex compared to substrates modified by polyubiquitin chains, a difference that is accentuated when the complex has a choice between these substrates. Incubating Ufd1/Npl4/Cdc48 with a substrate modified by a SUMO-polyubiquitin hybrid chain produced a series of single-particle cryo-EM structures that reveal features of interactions between Ufd1/Npl4/Cdc48 and ubiquitin prior to and during unfolding of ubiquitin. These results are consistent with cellular functions for SUMO and ubiquitin modifications and support a physical model wherein Ufd1/Npl4/Cdc48, SUMO, and ubiquitin conjugation pathways converge to promote clearance of proteins modified with SUMO and polyubiquitin.
Collapse
|
2
|
Doss EM, Tragesser-Tiña ME, Huang Y, Smaldino PJ, True JD, Kalinski AL, Rubenstein EM. APC/C Cdh1p and Slx5p/Slx8p ubiquitin ligases confer resistance to aminoglycoside hygromycin B in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000547. [PMID: 35622489 PMCID: PMC9007615 DOI: 10.17912/micropub.biology.000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Multiple ubiquitin ligases with nuclear substrates promote regulated protein degradation and turnover of protein quality control (PQC) substrates. We hypothesized that two ubiquitin ligases with nuclear substrates – the anaphase-promoting complex/cyclosome with the Cdh1p substrate recognition factor (APC/C Cdh1p ) and the Slx5p/Slx8p SUMO-targeted ubiquitin ligase – contribute to PQC. We predicted yeast lacking subunits of these enzymes would exhibit compromised growth in the presence of hygromycin B, which reduces translational fidelity. We observed that loss of Cdh1p, Slx5p, or Slx8p sensitizes yeast to hygromycin B to a similar extent as loss of two ubiquitin ligases with characterized roles in nuclear PQC and hygromycin B resistance. In addition to their well-characterized function in regulated protein degradation, our results are consistent with prominent roles for both APC/C Cdh1p and Slx5p/Slx8p in PQC.
Collapse
Affiliation(s)
| | | | - Yanru Huang
- Ball State University, Department of Biology
| | | | | | | | - Eric M. Rubenstein
- Ball State University, Department of Biology
,
Correspondence to: Eric M. Rubenstein (
)
| |
Collapse
|
3
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
4
|
James NE, Cantillo E, Yano N, Chichester CO, DiSilvestro PA, Hovanesian V, Rao RSP, Kim KK, Moore RG, Ahsan N, Ribeiro JR. Septin-2 is overexpressed in epithelial ovarian cancer and mediates proliferation via regulation of cellular metabolic proteins. Oncotarget 2019; 10:2959-2972. [PMID: 31105878 PMCID: PMC6508204 DOI: 10.18632/oncotarget.26836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial Ovarian Cancer (EOC) is associated with dismal survival rates due to the fact that patients are frequently diagnosed at an advanced stage and eventually become resistant to traditional chemotherapeutics. Hence, there is a crucial need for new and innovative therapies. Septin-2, a member of the septin family of GTP binding proteins, has been characterized in EOC for the first time and represents a potential future target. Septin-2 was found to be overexpressed in serous and clear cell human patient tissue compared to benign disease. Stable septin-2 knockdown clones developed in an ovarian cancer cell line exhibited a significant decrease in proliferation rates. Comparative label-free proteomic analysis of septin-2 knockdown cells revealed differential protein expression of pathways associated with the TCA cycle, acetyl CoA, proteasome and spliceosome. Further validation of target proteins indicated that septin-2 plays a predominant role in post-transcriptional and translational modifications as well as cellular metabolism, and suggested the potential novel role of septin-2 in promoting EOC tumorigenesis through these mechanisms.
Collapse
Affiliation(s)
- Nicole E. James
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Evelyn Cantillo
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
| | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI, USA
| | - Clinton O. Chichester
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Paul A. DiSilvestro
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore, India
| | - Kyukwang K. Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard G. Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nagib Ahsan
- Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jennifer R. Ribeiro
- Division of Gynecologic Oncology, Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI, USA
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Höpfler M, Kern MJ, Straub T, Prytuliak R, Habermann BH, Pfander B, Jentsch S. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO J 2019; 38:embj.2018100368. [PMID: 31015336 PMCID: PMC6545562 DOI: 10.15252/embj.2018100368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Chromatin is a highly regulated environment, and protein association with chromatin is often controlled by post‐translational modifications and the corresponding enzymatic machinery. Specifically, SUMO‐targeted ubiquitin ligases (STUbLs) have emerged as key players in nuclear quality control, genome maintenance, and transcription. However, how STUbLs select specific substrates among myriads of SUMOylated proteins on chromatin remains unclear. Here, we reveal a remarkable co‐localization of the budding yeast STUbL Slx5/Slx8 and ubiquitin at seven genomic loci that we term “ubiquitin hotspots”. Ubiquitylation at these sites depends on Slx5/Slx8 and protein turnover on the Cdc48 segregase. We identify the transcription factor‐like Ymr111c/Euc1 to associate with these sites and to be a critical determinant of ubiquitylation. Euc1 specifically targets Slx5/Slx8 to ubiquitin hotspots via bipartite binding of Slx5 that involves the Slx5 SUMO‐interacting motifs and an additional, novel substrate recognition domain. Interestingly, the Euc1‐ubiquitin hotspot pathway acts redundantly with chromatin modifiers of the H2A.Z and Rpd3L pathways in specific stress responses. Thus, our data suggest that STUbL‐dependent ubiquitin hotspots shape chromatin during stress adaptation.
Collapse
Affiliation(s)
- Markus Höpfler
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Maximilian J Kern
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Roman Prytuliak
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Computational Biology Group, Martinsried, Germany.,Aix-Marseille Univ, CNRS, IBDM UMR 7288, Marseille Cedex 9, France
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Stefan Jentsch
- Max Planck Institute of Biochemistry, Molecular Cell Biology, Martinsried, Germany
| |
Collapse
|
6
|
The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain. PLoS One 2019; 14:e0206336. [PMID: 30951522 PMCID: PMC6450643 DOI: 10.1371/journal.pone.0206336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/24/2019] [Indexed: 11/30/2022] Open
Abstract
Yra1 is an mRNA export adaptor involved in mRNA biogenesis and export in S. cerevisiae. Yra1 overexpression was recently shown to promote accumulation of DNA:RNA hybrids favoring DNA double strand breaks (DSB), cell senescence and telomere shortening, via an unknown mechanism. Yra1 was also identified at an HO-induced DSB and Yra1 depletion causes defects in DSB repair. Previous work from our laboratory showed that Yra1 ubiquitination by Tom1 is important for mRNA export. Here, we found that Yra1 is also ubiquitinated by the SUMO-targeted ubiquitin ligases Slx5-Slx8 implicated in the interaction of irreparable DSB with nuclear pores. We further show that Yra1 binds an HO-induced irreparable DSB in a process dependent on resection. Importantly, a Yra1 mutant lacking the evolutionarily conserved C-box is not recruited to an HO-induced irreparable DSB and becomes lethal under DSB induction in a HO-cut reparable system. Together, the data provide evidence that Yra1 plays a crucial role in DSB repair via homologous recombination. While Yra1 sumoylation and/or ubiquitination are dispensable, the Yra1 C-box region is essential in this process.
Collapse
|
7
|
Folz H, Niño CA, Taranum S, Caesar S, Latta L, Waharte F, Salamero J, Schlenstedt G, Dargemont C. SUMOylation of the nuclear pore complex basket is involved in sensing cellular stresses. J Cell Sci 2019; 132:jcs.224279. [PMID: 30837289 PMCID: PMC6467484 DOI: 10.1242/jcs.224279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/22/2019] [Indexed: 01/02/2023] Open
Abstract
The nuclear pore complex (NPC) is the major conduit for nucleocytoplasmic transport and serves as a platform for gene regulation and DNA repair. Several nucleoporins undergo ubiquitylation and SUMOylation, and these modifications play an important role in nuclear pore dynamics and plasticity. Here, we perform a detailed analysis of these post-translational modifications of yeast nuclear basket proteins under normal growth conditions as well as upon cellular stresses, with a focus on SUMOylation. We find that the balance between the dynamics of SUMOylation and deSUMOylation of Nup60 and Nup2 at the NPC differs substantially, particularly in G1 and S phase. While Nup60 is the unique target of genotoxic stress within the nuclear basket that probably belongs to the SUMO-mediated DNA damage response pathway, both Nup2 and Nup60 show a dramatic increase in SUMOylation upon osmotic stress, with Nup2 SUMOylation being enhanced in Nup60 SUMO-deficient mutant yeast strains. Taken together, our data reveal that there are several levels of crosstalk between nucleoporins, and that the post-translational modifications of the NPC serve in sensing cellular stress signals. Summary: Post-translational modifications, and in particular SUMOylation, of the nuclear basket subcomplex of the nuclear pore complex serve in its function as a sensor for mediating cellular stress signals.
Collapse
Affiliation(s)
- Hanne Folz
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Carlos A Niño
- Université Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, INSERM, CNRS, Hôpital St. Louis, 75475 Paris, France
| | - Surayya Taranum
- Université Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, INSERM, CNRS, Hôpital St. Louis, 75475 Paris, France
| | - Stefanie Caesar
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Lorenz Latta
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, D-66421 Homburg, Germany
| | - François Waharte
- Institut Curie, PSL Research University, CNRS UMR 144, UPMC, Space-time Imaging of Organelles and Endomembranes Dynamics & PICT-IBiSA Imaging Core Facility, 75005 Paris, France
| | - Jean Salamero
- Institut Curie, PSL Research University, CNRS UMR 144, UPMC, Space-time Imaging of Organelles and Endomembranes Dynamics & PICT-IBiSA Imaging Core Facility, 75005 Paris, France
| | - Gabriel Schlenstedt
- Institute of Medical Biochemistry and Molecular Biology, Universität des Saarlandes, D-66421 Homburg, Germany
| | - Catherine Dargemont
- Université Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, INSERM, CNRS, Hôpital St. Louis, 75475 Paris, France
| |
Collapse
|
8
|
Zhao X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol Cell 2019; 71:409-418. [PMID: 30075142 DOI: 10.1016/j.molcel.2018.07.027] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
Since the discovery of SUMO twenty years ago, SUMO conjugation has become a widely recognized post-translational modification that targets a myriad of proteins in many processes. Great progress has been made in understanding the SUMO pathway enzymes, substrate sumoylation, and the interplay between sumoylation and other regulatory mechanisms in a variety of contexts. As these research directions continue to generate insights into SUMO-based regulation, several mechanisms by which sumoylation and desumoylation can orchestrate large biological effects are emerging. These include the ability to target multiple proteins within the same cellular structure or process, respond dynamically to external and internal stimuli, and modulate signaling pathways involving other post-translational modifications. Focusing on nuclear function and intracellular signaling, this review highlights a broad spectrum of historical data and recent advances with the aim of providing an overview of mechanisms underlying SUMO-mediated global effects to stimulate further inquiry into intriguing roles of SUMO.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Ohkuni K, Pasupala N, Peek J, Holloway GL, Sclar GD, Levy-Myers R, Baker RE, Basrai MA, Kerscher O. SUMO-Targeted Ubiquitin Ligases (STUbLs) Reduce the Toxicity and Abnormal Transcriptional Activity Associated With a Mutant, Aggregation-Prone Fragment of Huntingtin. Front Genet 2018; 9:379. [PMID: 30279700 PMCID: PMC6154015 DOI: 10.3389/fgene.2018.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington’s Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt’s transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nagesh Pasupala
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Jennifer Peek
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | | | - Gloria D Sclar
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Reuben Levy-Myers
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Oliver Kerscher
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| |
Collapse
|
10
|
Peek J, Harvey C, Gray D, Rosenberg D, Kolla L, Levy-Myers R, Yin R, McMurry JL, Kerscher O. SUMO targeting of a stress-tolerant Ulp1 SUMO protease. PLoS One 2018; 13:e0191391. [PMID: 29351565 PMCID: PMC5774762 DOI: 10.1371/journal.pone.0191391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a high degree of sequence conservation, complement a ulp1Δ mutant in vivo, and process a SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO proteases we produced catalytically inactive recombinant fragments of the UD domains of ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmUTAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobilized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature and other stressors that induce protein misfolding. We also investigated whether a SUMO-interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal important details about how SUMO proteases target and bind their sumoylated substrates, especially under stress conditions. We also show that the robust pan-SUMO binding features of KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture systems.
Collapse
Affiliation(s)
- Jennifer Peek
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Catherine Harvey
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Dreux Gray
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Danny Rosenberg
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Likhitha Kolla
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Reuben Levy-Myers
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Rui Yin
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Jonathan L. McMurry
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Oliver Kerscher
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Nat Commun 2017; 8:1809. [PMID: 29180619 PMCID: PMC5703878 DOI: 10.1038/s41467-017-01900-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
SUMO-targeted ubiquitin ligases (STUbLs) mediate the ubiquitylation of SUMOylated proteins to modulate their functions. In search of direct targets for the STUbL RNF4, we have developed TULIP (targets for ubiquitin ligases identified by proteomics) to covalently trap targets for ubiquitin E3 ligases. TULIP methodology could be widely employed to delineate E3 substrate wiring. Here we report that the single SUMO E2 Ubc9 and the SUMO E3 ligases PIAS1, PIAS2, PIAS3, ZNF451, and NSMCE2 are direct RNF4 targets. We confirm PIAS1 as a key RNF4 substrate. Furthermore, we establish the ubiquitin E3 ligase BARD1, a tumor suppressor and partner of BRCA1, as an indirect RNF4 target, regulated by PIAS1. Interestingly, accumulation of BARD1 at local sites of DNA damage increases upon knockdown of RNF4. Combined, we provide an insight into the role of the STUbL RNF4 to balance the role of SUMO signaling by directly targeting Ubc9 and SUMO E3 ligases. SUMO and ubiquitin are key signal transducers in several cellular processes including the DNA-damage response. Here the authors describe a method for selective enrichment of ubiquitin substrates for E3 ligases from complex cellular proteomes and identify the SUMO conjugation machinery as direct RNF4 substrates.
Collapse
|
12
|
Kim JY, Song JT, Seo HS. Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions. FEBS Open Bio 2017; 7:1622-1634. [PMID: 28979848 PMCID: PMC5623694 DOI: 10.1002/2211-5463.12309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Sumoylation regulates numerous cellular functions in plants as well as in other eukaryotic systems. However, the regulatory mechanisms controlling E3 small ubiquitin‐related modifier (SUMO) ligase are not well understood. Here, post‐translational modification of the Arabidopsis E3 SUMO ligase AtSIZ1 was shown to be specifically controlled by abiotic stresses. AtSIZ1 ubiquitination was induced by exposure to heat stress in transgenic plants overexpressing the E3 ubiquitin ligase COP1. In addition, AtSIZ1 ubiquitination was strongly enhanced in transgenic plants overexpressing SUMO isopeptidase ESD4 under heat stress. By contrast, drought stress induced sumoylation rather than ubiquitination of AtSIZ1 and sumoylated forms of AtSIZ1 accumulated in esd4 and cop1–4 mutants. Moreover, siz1 mutants were found to be tolerant to heat and drought stresses. Taken together, these results indicate that ubiquitination and sumoylation of AtSIZ1 in response to abiotic stresses depend on the activities of COP1 and ESD4 and that the activity and stability of AtSIZ1 can be specifically controlled by different abiotic stresses.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant ScienceResearch Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding InstituteSeoul National UniversityKorea
| | - Jong Tae Song
- School of Applied BiosciencesKyungpook National UniversityDaeguKorea
| | - Hak Soo Seo
- Department of Plant ScienceResearch Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding InstituteSeoul National UniversityKorea.,Bio-MAX InstituteSeoul National UniversityKorea
| |
Collapse
|
13
|
Nie M, Moser BA, Nakamura TM, Boddy MN. SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion. PLoS Genet 2017; 13:e1006776. [PMID: 28475613 PMCID: PMC5438191 DOI: 10.1371/journal.pgen.1006776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/19/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
The posttranslational modifiers SUMO and ubiquitin critically regulate the DNA damage response (DDR). Important crosstalk between these modifiers at DNA lesions is mediated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitinates SUMO chains to generate SUMO-ubiquitin hybrids. These SUMO-ubiquitin hybrids attract DDR proteins able to bind both modifiers, and/or are degraded at the proteasome. Despite these insights, specific roles for SUMO chains and STUbL in the DDR remain poorly defined. Notably, fission yeast defective in SUMO chain formation exhibit near wild-type resistance to genotoxins and moreover, have a greatly reduced dependency on STUbL activity for DNA repair. Based on these and other data, we propose that a critical role of STUbL is to antagonize DDR-inhibitory SUMO chain formation at DNA lesions. In this regard, we identify a SUMO-binding Swi2/Snf2 translocase called Rrp2 (ScUls1) as a mediator of the DDR defects in STUbL mutant cells. Therefore, in support of our proposal, SUMO chains attract activities that can antagonize STUbL and other DNA repair factors. Finally, we find that Taz1TRF1/TRF2-deficiency triggers extensive telomeric poly-SUMOylation. In this setting STUbL, together with its cofactor Cdc48p97, actually promotes genomic instability caused by the aberrant processing of taz1Δ telomeres by DNA repair factors. In summary, depending on the nature of the initiating DNA lesion, STUbL activity can either be beneficial or harmful. Since its discovery in 2007, SUMO-targeted ubiquitin ligase (STUbL) activity has been identified as a key regulator of diverse cellular processes such as DNA repair, mitosis and DNA replication. In each of these processes, STUbL has been shown to promote the chromatin extraction and/or degradation of SUMO chain modified proteins. However, it remains unclear whether STUbL acts as part of a "programmed" cascade to remove specific proteins, or antagonizes localized SUMO chain formation that otherwise impedes each process. Here we determine that SUMO chains, the major recruitment signal for STUbL, are largely dispensable for genotoxin resistance in fission yeast. Moreover, when SUMO chain formation is compromised, the need for STUbL activity in DNA repair is strongly reduced. These results indicate a primary role for STUbL in antagonizing localized SUMO chain formation. Interestingly, we also find that STUbL activity can be toxic at certain genomic lesions that induce extensive local SUMOylation. For example, STUbL promotes the chromosome instability and cell death caused by deprotected telomeres following Taz1TRF1/2 deletion. Together, our data suggest that STUbL limits DNA repair-inhibitory SUMO chain formation, and depending on the nature of the genomic lesion, can either suppress or cause genome instability.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael N. Boddy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Niño CA, Guet D, Gay A, Brutus S, Jourquin F, Mendiratta S, Salamero J, Géli V, Dargemont C. Posttranslational marks control architectural and functional plasticity of the nuclear pore complex basket. J Cell Biol 2016; 212:167-80. [PMID: 26783300 PMCID: PMC4738382 DOI: 10.1083/jcb.201506130] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin modifications of the nuclear pore complex (NPC) control the architectural plasticity of the nuclear basket, contributing to its tethering to the core NPC, with consequences on the cellular response to DNA damage and telomere recombination. The nuclear pore complex (NPC) serves as both the unique gate between the nucleus and the cytoplasm and a major platform that coordinates nucleocytoplasmic exchanges, gene expression, and genome integrity. To understand how the NPC integrates these functional constraints, we dissected here the posttranslational modifications of the nuclear basket protein Nup60 and analyzed how they intervene to control the plasticity of the NPC. Combined approaches highlight the role of monoubiquitylation in regulating the association dynamics of Nup60 and its partner, Nup2, with the NPC through an interaction with Nup84, a component of the Y complex. Although major nuclear transport routes are not regulated by Nup60 modifications, monoubiquitylation of Nup60 is stimulated upon genotoxic stress and regulates the DNA-damage response and telomere repair. Together, these data reveal an original mechanism contributing to the plasticity of the NPC at a molecular-organization and functional level.
Collapse
Affiliation(s)
- Carlos A Niño
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - David Guet
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Alexandre Gay
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Sergine Brutus
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Frédéric Jourquin
- Aix-Marseille University, CNRS UMR 7258, INSERM UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Equipe labellisée Ligue contre le cancer, 13273 Marseille, France
| | - Shweta Mendiratta
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| | - Jean Salamero
- Institut Curie, PSL Research University, CNRS UMR 144, Pierre-and-Marie-Curie Université, Team-Space time imaging of endomembranes and organelles dynamics and PICT-IBiSA Imaging Core Facility, 75005 Paris, France
| | - Vincent Géli
- Aix-Marseille University, CNRS UMR 7258, INSERM UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille, Equipe labellisée Ligue contre le cancer, 13273 Marseille, France
| | - Catherine Dargemont
- University Paris Diderot, Sorbonne Paris Cité, Pathologie et Virologie Moléculaire, Institut National de la Santé et de la Recherche Medicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Equipe labellisée Ligue contre le cancer, Hôpital St. Louis, 75475 Paris, France
| |
Collapse
|
15
|
Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1. PLoS Genet 2016; 12:e1006165. [PMID: 27398807 PMCID: PMC4939958 DOI: 10.1371/journal.pgen.1006165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/11/2016] [Indexed: 12/04/2022] Open
Abstract
Posttranslational modifications (PTMs) provide dynamic regulation of the cellular proteome, which is critical for both normal cell growth and for orchestrating rapid responses to environmental stresses, e.g. genotoxins. Key PTMs include ubiquitin, the Small Ubiquitin-like MOdifier SUMO, and phosphorylation. Recently, SUMO-targeted ubiquitin ligases (STUbLs) were found to integrate signaling through the SUMO and ubiquitin pathways. In general, STUbLs are recruited to target proteins decorated with poly-SUMO chains to ubiquitinate them and drive either their extraction from protein complexes, and/or their degradation at the proteasome. In fission yeast, reducing or preventing the formation of SUMO chains can circumvent the essential and DNA damage response functions of STUbL. This result indicates that whilst some STUbL "targets" have been identified, the crucial function of STUbL is to antagonize SUMO chain formation. Herein, by screening for additional STUbL suppressors, we reveal crosstalk between the serine/threonine phosphatase PP2A-Pab1B55 and the SUMO pathway. A hypomorphic Pab1B55 mutant not only suppresses STUbL dysfunction, but also mitigates the phenotypes associated with deletion of the SUMO protease Ulp2, or mutation of the STUbL cofactor Rad60. Together, our results reveal a novel role for PP2A-Pab1B55 in modulating SUMO pathway output, acting in parallel to known critical regulators of SUMOylation homeostasis. Given the broad evolutionary functional conservation of the PP2A and SUMO pathways, our results could be relevant to the ongoing attempts to therapeutically target these factors. Posttranslational modifiers (PTMs) orchestrate the proteins and processes that control genome stability and cell growth. Accordingly, deregulation of PTMs causes disease, but can also be harnessed therapeutically. Crosstalk between PTMs is widespread, and acts to increase specificity and selectivity in signal transduction. Such crosstalk exists between two major PTMs, SUMO and ubiquitin, wherein a SUMO-targeted ubiquitin ligase (STUbL) can additionally mark SUMO-modified proteins with ubiquitin. Thereby, STUbL generates a hybrid SUMO-ubiquitin signal that is recognized by selective effectors, which can extract proteins from complexes and/or direct their degradation at the proteasome. STUbL function is critical to maintain genome stability, and it also mediates the therapeutic effects of arsenic trioxide in leukemia treatment. Therefore, a full appreciation of STUbL regulation and integration with other PTMs is warranted. Unexpectedly, we find that reduced activity of PP2A, a major cellular phosphatase, compensates for STUbL inactivation. Our results indicate that PP2A-regulated phosphorylation reduces the SUMO chain output of the SUMO pathway, thus reducing cellular dependency on STUbL and the functionally related factors Ulp2 and Rad60. Our data not only reveal a striking level of plasticity in signaling through certain PTMs, but also highlight potential "escape" mechanisms for SUMO pathway-based therapies.
Collapse
|
16
|
In Vivo and In Vitro Genotoxic and Epigenetic Effects of Two Types of Cola Beverages and Caffeine: A Multiassay Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7574843. [PMID: 27471731 PMCID: PMC4947684 DOI: 10.1155/2016/7574843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/14/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
Abstract
The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models.
Collapse
|
17
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Thu YM, Van Riper SK, Higgins L, Zhang T, Becker JR, Markowski TW, Nguyen HD, Griffin TJ, Bielinsky AK. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. Cell Rep 2016; 15:1254-65. [PMID: 27134171 DOI: 10.1016/j.celrep.2016.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/30/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Loss of minichromosome maintenance protein 10 (Mcm10) causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC), Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC) activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan Kaye Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tianji Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan Robert Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd William Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy Jon Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Ohkuni K, Takahashi Y, Fulp A, Lawrimore J, Au WC, Pasupala N, Levy-Myers R, Warren J, Strunnikov A, Baker RE, Kerscher O, Bloom K, Basrai MA. SUMO-Targeted Ubiquitin Ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Mol Biol Cell 2016; 27:mbc.E15-12-0827. [PMID: 26960795 PMCID: PMC4850037 DOI: 10.1091/mbc.e15-12-0827] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast, flies and tumorigenesis in human cells; thus, defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast has shown that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here, we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1 since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization compared to either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yoshimitsu Takahashi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alyona Fulp
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nagesh Pasupala
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | - Reuben Levy-Myers
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | - Jack Warren
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Oliver Kerscher
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Munira A. Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Boomsma W, Nielsen SV, Lindorff-Larsen K, Hartmann-Petersen R, Ellgaard L. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases. PeerJ 2016; 4:e1725. [PMID: 26966660 PMCID: PMC4782732 DOI: 10.7717/peerj.1725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is not a unique case, and that several other yeast and human E3 ligases have sequence properties that may allow them to recognize substrates by a similar mechanism as San1.
Collapse
Affiliation(s)
- Wouter Boomsma
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Sofie V Nielsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Lars Ellgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
21
|
Kim JY, Jang IC, Seo HS. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1182. [PMID: 27536318 PMCID: PMC4971112 DOI: 10.3389/fpls.2016.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 05/22/2023]
Abstract
Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.
Collapse
Affiliation(s)
- Joo Y. Kim
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, SingaporeSingapore
| | - Hak S. Seo
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
- *Correspondence: Hak S. Seo,
| |
Collapse
|
22
|
Liu D, Pan F, Liu J, Wang Y, Zhang T, Wang E, Liu J. Individual and combined antioxidant effects of ginsenoside F2 and cyanidin-3-O-glucoside in human embryonic kidney 293 cells. RSC Adv 2016; 6:81092-81100. [DOI: 10.1039/c6ra14831j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
23
|
Køhler JB, Tammsalu T, Jørgensen MM, Steen N, Hay RT, Thon G. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast. Nat Commun 2015; 6:8827. [PMID: 26537787 PMCID: PMC4667616 DOI: 10.1038/ncomms9827] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, the conjugation of proteins to the small ubiquitin-like modifier (SUMO) regulates numerous cellular functions. A proportion of SUMO conjugates are targeted for degradation by SUMO-targeted ubiquitin ligases (STUbLs) and it has been proposed that the ubiquitin-selective chaperone Cdc48/p97-Ufd1-Npl4 facilitates this process. However, the extent to which the two pathways overlap, and how substrates are selected, remains unknown. Here we address these questions in fission yeast through proteome-wide analyses of SUMO modification sites. We identify over a thousand sumoylated lysines in a total of 468 proteins and quantify changes occurring in the SUMO modification status when the STUbL or Ufd1 pathways are compromised by mutations. The data suggest the coordinated processing of several classes of SUMO conjugates, many dynamically associated with centromeres or telomeres. They provide new insights into subnuclear organization and chromosome biology, and, altogether, constitute an extensive resource for the molecular characterization of SUMO function and dynamics.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Maria Mønster Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Nana Steen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| | - Ronald Thomas Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen DK-2200, Denmark
| |
Collapse
|
24
|
Nie M, Boddy MN. Pli1(PIAS1) SUMO ligase protected by the nuclear pore-associated SUMO protease Ulp1SENP1/2. J Biol Chem 2015. [PMID: 26221037 DOI: 10.1074/jbc.m115.673038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent modification of the proteome by SUMO is critical for genetic stability and cell growth. Equally crucial to these processes is the removal of SUMO from its targets by the Ulp1 (HuSENP1/2) family of SUMO proteases. Ulp1 activity is normally spatially restricted, because it is localized to the nuclear periphery via interactions with the nuclear pore. Delocalization of Ulp1 causes DNA damage and cell cycle defects, phenotypes thought to be caused by inappropriate desumoylation of nucleoplasmic targets that are normally spatially protected from Ulp1. Here, we define a novel consequence of Ulp1 deregulation, with a major impact on SUMO pathway function. In fission yeast lacking Nup132 (Sc/HuNUP133), Ulp1 is delocalized and can no longer antagonize sumoylation of the PIAS family SUMO E3 ligase, Pli1. Consequently, SUMO chain-modified Pli1 is targeted for proteasomal degradation by the concerted action of a SUMO-targeted ubiquitin ligase (STUbL) and Cdc48-Ufd1-Npl4. Pli1 degradation causes the profound SUMO pathway defects and associated centromere dysfunction in cells lacking Nup132. Thus, perhaps counterintuitively, Ulp1-mediated desumoylation can promote SUMO modification by stabilizing a SUMO E3 ligase.
Collapse
Affiliation(s)
- Minghua Nie
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Michael N Boddy
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Abu Irqeba A, Li Y, Panahi M, Zhu M, Wang Y. Regulating global sumoylation by a MAP kinase Hog1 and its potential role in osmo-tolerance in yeast. PLoS One 2014; 9:e87306. [PMID: 24498309 PMCID: PMC3911979 DOI: 10.1371/journal.pone.0087306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/23/2013] [Indexed: 12/01/2022] Open
Abstract
Sumoylation, a post-translational protein modification by small ubiquitin-like modifier (SUMO), has been implicated in many stress responses. Here we analyzed the potential role of sumoylation in osmo-response in yeast. We find that osmotic stress induces rapid accumulation of sumoylated species in normal yeast cells. Interestingly, disruption of MAP kinase Hog1 leads to a much higher level of accumulation of sumoylated conjugates that are independent of new protein synthesis. We also find that the accumulation of sumoylated species is dependent on a SUMO ligase Siz1. Notably, overexpression of SIZ1 in HOG1-disruption mutants (hog1Δ) but not in wild type cells leads to a markedly increased and prolonged accumulation of sumoylated species. Examination of osmo-tolerance of yeast mutants that display either an increase or a decrease in the global sumoylation level revealed an inverse relationship between accumulation of sumoylated conjugates and osmo-tolerance. Further investigation has shown that many of the sumoylated species induced by hyperosmotic stress are actually poly-sumoylated. Together, these findings indicate that abnormal accumulation of poly-sumoylated conjugates is harmful for osmo-tolerance in yeast, and suggest that Hog1 promotes adaptation to hyperosmotic stress partially via regulation of global sumoylation level.
Collapse
Affiliation(s)
- Ameair Abu Irqeba
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Yang Li
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Mahmoud Panahi
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Ming Zhu
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| |
Collapse
|